تحلیل فنولوژی و تولید خالص اکولوژیک زوفا (Hyssopus officinalis) با استفاده از مدل AEZ در شرایط نیمه‌گرمسیری جنوب استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه جیرفت، جیرفت، ایران

2 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، جیرفت، ایران.

3 گروه علوم کشاورزی، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

کمّی­سازی رشد و نمو در گیاهان ابزاری مهم جهت بهینه کردن عملیات زراعی و توسعه کشت و تولید گیاهان دارویی است. این پژوهش به‌منظور بررسی امکان پیش­بینی تاریخ کاشت بهینه زوفا (Hyssopus officinalis) با استفاده از مدل AEZ انجام شد. پایگاه داده‌های ورودی مدل از داده‌های آب‌وهوا (تابش خورشیدی، دمای کمینه، دمای بیشینه و بارندگی)، داده‌های گیاه (مراحل و عملکرد زیست‌توده) و داده‌های خاک (ویژگی‌های فیزیکی و شیمیایی خاک) ایجاد شد. آزمایش در مزرعه به‌صورت اسپیت پلات در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 97-1396 اجرا شد. عامل اصلی سطوح مختلف کود نیتروژن شامل صفر، 50، 100 و 150 کیلوگرم در هکتار و عامل فرعی تاریخ‌‌های مختلف کاشت به‌فاصله 30 روزه از 25 مهرماه تا 25 اسفندماه در نظر گرفته شد، داده­های این آزمایش برای واسنجی مدل و داده‌های دو سال آزمایش­های تاریخ کاشت‌ در دوره 1395-97 برای ارزیابی مدل استفاده شد. نتایج ارزیابی مدل نشان داد مقدار ریشه میانگین مربعات خطای نرمال شده (RMSEn) زیست‌توده پیش­بینی شده 81/10 درصد بود، مقدار شاخص کارایی (E)، مقدار شاخص سازگاری (D) مدل، مقدار شاخص جرم باقی‌مانده (CRM) ، ضریب تبیین (R2) برای سال اول به‌ترتیب 999/0، 98/0 ، 66/0 و 98 درصد بود، مقدار RMSEn، (E)، (D) و (CRM) در سال دوم به‌ترتیب برابر با 96/5، 999/0، 98/0 و 0454/0 و 98/0 درصد مشاهده شد. نتایج بیانگر تطابق خوب مقادیر شبیه‌سازی شده و واقعی بوده و مدل با دقت بالایی زیست‌توده را شبیه‌سازی نموده است. نتایج حاصل از تحلیل دوره­ای تاریخ کاشت و تولید زیست‌توده خالص با استفاده از مدل AEZ در ایستگاه‌های هواشناسی منطقه نشان داد: در ایستگاه هواشناسی جیرفت به‌طور میانگین دوره رشد در بازه زمانی خرداد‌ماه تا 31 شهریور با محدودیت تنش گرما مواجه است در این زمان، رشد گیاه متوقف می‌شود و تولید زیست­توده کاهش پیدا می‌کند. در ایستگاه هواشناسی بم، بیشترین زیست­توده (به‌ترتیب 9/23219 و 2/23550 کیلوگرم در هکتار) در تاریخ کاشت‌های اول مهرماه تا اوایل آبان‌ماه پیش­بینی گردید در این منطقه، محدودیت تنش سرما در تاریخ کاشت‌های اول دی‌ماه تا 15 بهمن‌ماه و محدودیت دمایی تنش گرما در تیرماه پیش­بینی شد. در ایستگاه هواشناسی کهنوج دوره محدودکننده رشد از اوایل خرداد‌ماه تا اواخر شهریورماه پیش­بینی گردید، بیشترین عملکرد زیست­توده (به‌ترتیب 9/19413 و 3/19764 کیلوگرم در هکتار) برای این منطقه در تاریخ‌های کاشت‌ اول آبان‌ماه تا اوایل آذرماه تخمین زده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of phenology and net ecological production of Hyssopus officinalis using AEZ model under subtropical conditions of Southern Kerman

نویسندگان [English]

  • Nazila Abousaidi Dowlatbad 1
  • mehrangiz Jokar-Tangkarami 1
  • Ahmad Aein 2
  • Javad Taei Semiromi 3
  • Zeinab Roozpeykar 1
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
2 Department of Agronomy and Horticulture Sciences, South Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Jiroft, Iran.
3 Department of Agricultural Science, Technical and Vocational University, Tehran, Iran.
چکیده [English]

Introduction
Hyssop (Hyssopus officinalis) is a plant belonging to the genus Mint. The origin of this plant is reported to be Asia Minor and it goes from the Caspian Sea to the Black Sea as well as in the sandy areas of the Mediterranean. Usable parts of hyssop are flowering branches, leaves and seeds. Nowadays, the simulation models of growth and development have been used as suitable tools for acknowledging and analyzing the effect of plant, soil and atmosphere parameters for plants growth and development. Over the last two decades, FAO (Food and Agriculture Organization) has developed and successfully applied the agro-ecological zones (AEZ) methodology and supporting software packages to analysis solutions to various problems of land resources for planning and management for sustainable agricultural development at regional, national and sub-national levels. The issues addressed include linking land-use outputs with other development goals in such areas as food production, food self-sufficiency, cash crop requirements, issues of soil fertility constraints, soil erosion risks and land degradation. This procedure can calculate and present the potential biomass production of any crops under specific climatic condition using climatology parameters. FAO has presented the procedure manual of AEZ Package as a guideline to analyze land suitability for any crops. So, the current research is done to investigate the optimum planting date and forecast the biomass production of Hyssop using the AEZ model.
 
Materials and Methods
 The experiment was conducted as a split-plot in a completely randomized block design with six planting dates and three replications in 2017-2018. The main factor was different levels of nitrogen fertilizer: 0, 50, 100 and 150 kg/ha and sub-factor was planting dates between 30-day periods from October 17 to March 25. The data of this experiment were used to calibrate the model of AEZ and the data of two years of planting date experiments in the period 2016-2017 were used to evaluate the model, so that the data collected in the first year were used for calibration and the data of the second year were used for evaluation. The index of Physiological Days (PDays) was used for analyzing photoperiod response of Hyssop during different planting date. The procedure of Soltane et al., (2006) was used to calculate PDays index.
 Results and discussion
 The AEZ model evaluation results showed that the RMSEn value of the predicted biomass was 10.81%, and the efficiency index (E), the Hyssop adaptation index (D) value, the coefficient of residual mass (CRM) value in the first year for the predicted value was 0.999, 0.98 and 0.06, respectively. The coefficient of determination (R2) was obtained by linear regression analysis of functions between the actual and simulated values in the first year (R2=0.98). The RMSEn, (E), (D) and (CRM) values for the predicted biomass in the second year were 5.96, 0.999, 0.0454 and 0.98%, respectively. These results indicate that the simulated and real values are in good agreement. Consequently, the model simulated the biomass with high accuracy. The results of biomass and yield analyzing using AEZ model indicated limited growth period with in a period in Jiroft station can be occurred from May to September 21, at this period, the plant stops growing and the yield decreases. Based on model estimation values for other related climatology stations: the highest biomass yield for Bam climatology station (2321.9 kg/ha and 23550.2 kg/ha respectively) can be September to early October, the cold stress limitation can be occurred at the planting date from December 1st to February 3th and the heat stress can be occurred on July planting date. In Kahnuj station, limited growth period with high temperature can be occurred from Early May to September 11, the highest biomass performance can (19413.9 kg/ha and 19764.3 kg/ha respectively) be obtained at the planting date from October to early November.
 
Conclusion
 Given the ability of the AEZ model to analyze the hyssop plant production system, which is able to simulate the effect of different c
limatic, climatic, soil, managerial and plant variables on plant growth and yield, this model can be widely used in different regions as He used an important decision-making and management tool in research and executive dimensions.

کلیدواژه‌ها [English]

  • AEZ mode
  • Hyssopus officinalis planting date
  • net ecological production
  1. Ashraf, S. (2011). Estimating the land production potential for wheat, using GIS method. Australian Jornal of Basic and Applied Sciences, 5(8), 118-122. http://ajbasweb.com/old/ajbas/2011/August-2011/118-122.pdf
  2. Ashrafv, S., Ashraf, V., & Abbaspour, H. (2011). Assessment of land production potential for barley using geographic information system (GIS) method. Indian Journal of Science and Technology, 4(12), 1775-1777. DOI:17485/ijst/2011/v4i12.32
  3. De Pauw, E., Mirghasemi, A., Ghaffari, A., and Nseir, B. (2008). Agro ecological zones of Karkheh River Basin: A reconnaissance assessment of climatic and edaphic patterns and their similarity to areas inside and outside the basin. Technical Report, Syrian Arab Republic: International Center for Agricultural Research in the Dry Areas (ICARDA). https://hdl.handle.net/20.500.11766/9711.
  4. Dua, V.K., Govindakrishnan, P.M., & Singh, B.P. (2014). Calibration of WOFOST model for potato. India. Potato Research, 41(2), 105-112. http://epubs.icar.org.in/.../PotatoJ
  5. Dwyer, L.M., Stewart, D.M., Carrigan, L., Neave, B.L., Ma, P., & Bichin, D. (1999). A general thermal index for maize. Agronomy Journal, 91, 940-946. https://doi.org/10.2134/agronj1999.916940x
  6. Eitzinger, J., Trnka, M., Hosch, J., Zalud, Z., & Dubrovsky, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling, 171, 223-246. https://doi.org/10.1016/j.ecolmodel.2003.08.012
  7. FAO.(1976).A framework for land evaluation. Rome. FAO Soils Bulletin32.https://www.fao.org/3/x5310e/x5310e00.htm
  8. FAO. (1996). Guidelines: Agroecological zoning. Rome. FAO Soils Bultin73. https://www.fao.org/3/w2962e/w2962e00.htm.
  9. Fathiazad, F., & Hamedeyazdan. S. (2011). A review on Hyssopus officinalis L.: Composition and biological activities. African Journal of Pharmacy and Pharmacology, 5, 1959–1966. DOI:5897/AJPP11.527
  10. Hammer, G.L., & Muchow, R.C. (1994). Assessing climatic risk to sorghum production in water limited subtropical environments. I. Development and testing of a simulation model. Field Crops Research 36, 221-234. Field Crops Research 36, 221-234. https://doi.org/10.1016/0378-4290(94)90114-7
  11. Mijani, S., Eskandarinasrbadi, S., Zarghani, H., & Ghiasabadi, M. (2013). Seed Germination and early growth responses of hyssop, sweet basil and oregano to temperature lwvels. Notulae Scientia Biologicae, 5(4): 462-467. DOI: https://doi.org/10.15835/nsb549164
  12. Pourmeidani, A., Ghamghami M., Olya H., & Ghahreman, N. (2020). Determination of suitable regions for cultivation of three medicinal plants under a changing climate. Environmental Processes 7, 89-108. https://doi.org/10.1007/s40710-020-00423-w
  13. Radatz, H. (1979). Error analysis in the mathematics education. Journal for Research in Mathematics Education, 9, 163-172. https://doi.org/10.2307/748804
  14. Rinaldy, M., Losavio, N., & Flagella, Z. (2003). Evaluation of OILCROP-SUN model for sunflower in southern Italy. Agricultural Systems, 78, 17-30. https://doi.org/10.1016/S0308-521X(03)00030-1
  15. Singh, A.K., Tripathy, R., & Chopra, U.K. (2008). Evaluation of CERES wheat and CropSyst models for water-nitrogen interactions in wheat crop. Agricultral Water Management, 95, 776-786. https://doi.org/10.1016/j.agwat.2008.02.006
  16. Soltani, A., Hammer, G.L., Torabi, M.J., Robertson, B., & Zeinali, E. (2006). Modeling chickpea growth and development: phenological development. Field Crops Researech, 99, 1-13. https://doi.org/10.1016/j.fcr.2006.02.004.
  17. Taei, J., Ghanbari, A., Ghaffari, A., Siahsar, B., Amiri, E., & Ayoubi, S. (2011). New landscape planning concepts to management strategies for developing agricultural regions. Notulae Scientia Biologicae, 3(4): 51-57. http://dx.doi.org/10.15835/nsb.3.4.6361.
  18. Taei Semiromi, J., Mirbagheri. V., & Amiri, A. (2015). Agroclimatic zoning of Kerman province for production potato. Final Report: Jiroft, University of Jiroft. (In Persian)
  19. Walpole, R.E., Myers, R.M., & Myers, S.L. (1998). Probability and Statistics for Engineers and Scientists. Sixth Edition, New Jersey: Prentice Hall International. https://spada.uns.ac.id/pluginfile.php/221008/mod_resource/content/1/ProbabilityStatistics_for_EngineersScientists%289th_Edition%29_Walpole.pdf
  20. Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorologyical Society, 63, 1309-1313. https://doi.org/10.1175/1520-0477(1982)063%3C1309:SCOTEO%3E2.0.CO;2.
  21. Zawislak, G. (2013). The chemical composition of essential hyssop oil depending on plant growth stage. Acta Scientiarum Polonorum Hortorum Cultus, 12(3): 161-170. https://www.researchgate.net/journal/Acta-scientiarum-Polonorum-Hortorum-cultus-Ogrodnictwo-1644-0692

 

CAPTCHA Image