ارزیابی عملکرد، اجزای عملکرد و شاخص‌های رشدی پنبه (Gossypium hirsutum L.) و ذرت (Zea mays L.) در سیستم کشت مخلوط جایگزینی در شرایط آب‌و‌هوایی گناباد

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران.

2 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

3 مرکز آموزش و تحقیقات کشاورزی و منابع طبیعی خراسان رضوی، ایران.

چکیده

به‌منظور ارزیابی اثر کشت مخلوط جایگزینی بر عملکرد، اجزای عملکرد و شاخص­های رشدی دو گیاه پنبه (Gossypium hirsutum L.) و ذرت (Zea mays L.)، آزمایشی در مزرعه ایستگاه تحقیقات کشاورزی و منابع طبیعی گناباد، در قالب طرح پایه بلوک­های کامل تصادفی با چهار تکرار در دو سال زراعی 94-1393 و 95-1394 اجرا شد. تیمارهای آزمایش شامل سه الگوی مخلوط جایگزینی (یک ردیف ذرت و یک ردیف پنبه (1:1)، یک ردیف ذرت و دو ردیف پنبه (1:2)، یک ردیف ذرت و سه ردیف پنبه (1:3)) و کشت خالص دو گیاه بود. صفات مورد مطالعه شامل ارتفاع بوته، عملکرد دانه، عملکرد علوفه و نسبت برابری زمین برای ذرت و ارتفاع گیاه، تعداد شاخه زایشی و رویشی، عملکرد دانه، عملکرد وش و نسبت برابری زمین بود. نتایج نشان داد که بیشترین تعداد شاخه زایا، تعداد شاخه رویا، عملکرد وش، تجمع ماده خشک و شاخص سطح برگ در واحد سطح پنبه برای تیمار دو ردیف پنبه + یک ردیف ذرت شد. بالاترین عملکرد وش برای کشت خالص پنبه در سال­های اول و دوم به‌ترتیب با 7/1878 و 1/1764 کیلوگرم در هکتار به‌دست آمد و کمترین میزان به تیمار یک ردیف پنبه+ یک ردیف ذرت اختصاص داشت که در مقایسه با کشت خالص به‌ترتیب 84 و 77 درصد در سال­های اول و دوم کاهش داشت. بیشترین شاخص سطح برگ پنبه در 60 روز پس از سبز شدن در کشت مخلوط دو ردیف پنبه و یک ردیف ذرت در سال­های اول و دوم به‌ترتیب با 96/1 و 63/1 مشاهده شد. در مورد ذرت نیز در سال­های اول و دوم بالاترین عملکرد علوفه خشک در کشت خالص به­ترتیب با 8/5489 و 5639 تن در هکتار و کمترین مقدار به­ترتیب در الگوهای یک ردیف ذرت + دو ردیف پنبه با 1/1894 و 9/2196 تن در هکتار مشاهده شد. بیشترین شاخص سطح برگ ذرت به­ترتیب با 73/2 و17/3 در سال­های اول و دو آزمایش مربوط به تیمار سه ردیف پنبه + یک ردیف ذرت بود. در بین تیمارهای کشت مخلوط در ذرت بالاترین نسبت برابری زمین به­ترتیب با 60/0 و 58/0 مربوط به الگوی 1 ردیف ذرت و 3 ردیف پنبه و برای پنبه نیز در همین الگوی کشت در سال­های اول و دوم آزمایش به­ترتیب با 59/0 و 58/0 مشاهده شد. نتایج این بررسی نشان داد که می­توان از کشت مخلوط ذرت و پنبه به‌عنوان یک راهکار مدیریتی پایدار برای بهبود عملکرد دو گیاه ذرت و پنبه استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Yield, Yield Components and Growth Indices of Cotton (Gossypium hirsutum L.) and Maize (Zea mays L.) Affected on Replacement Intercropping System under Gonabad Climate Conditions

نویسندگان [English]

  • Mohammad Dadmand 1
  • Alireza Koocheki 1
  • Mehdi Nassiri Mahallati 2
  • Mohammad Reza Ramezani Moghadam 3
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
3 Research Center of Agricultural and Natural Resources of Khorasan Razavi Province, Iran
چکیده [English]

Introduction
Intercropping is highly recommended to be used in many parts of the world for food or fibers productions, because of its overall high productivity. Intercropping consists of growing two or more crops together at once, even though the crops are not sown or harvested simultaneously. The success of intercropping is due to an enhanced temporal and spatial complementarity of resource capture. Many studies have reported that intercropping can increase crop yield due to efficient utilization of nutrients and light, and enhanced positive interactions between crops. Features of an intercropping system can differ with soil conditions, climate, economic situation, and preferences of the local community. In this study, we carried out a two-year field experiments to evaluate yield and yield components as well as growth indices in cotton and maize grown in an alternative intercropping systems.
Materials and Methods
The experiment was carried out based on a randomized complete block design at Gonabad Agricultural and Natural Resources Research Station. The cotton (Khordad cv.) and maize (D.C 370) plants were evaluated using an alternative intercropping system. The treatments consisted of one row of cotton along with one row of maize, two rows of cotton along with one row of maize, three rows of cotton along with one row of corn, and pure cotton and maize cropping. The seeds were sown 20 cm apart in the rows in May. Irrigation was performed every 10 days and monitored using a volumetric flow meter. Twenty days after emergence, sampling was carried out by harvesting three plants of each species to measure growth indices such as plant height, leaf rea index and dry weight. At the end of growing season the crops were harvested and yield and yield components were determined. The data were analyzed by using SAS 9.1 software.
Results and Discussion
The effect of intercropping was significant on maize seed and forage yield. Since plant density in intercropping treatments was less than pure culture, the maximum maize seed and forage yields were obtained from pure culture treatment. By contrast, the minimum seed and forage yields were related to one row maize along with two rows cotton treatment. Reduction in maize biological yield due to intercropping was reported by Khorami-Vafa (2006), Tuna and Orak (2007) and Patel et al., (1999). Three rows cotton along with one row maize treatment produced the maximum maize seed and forage yields. Yield increasing in this treatment may be due to more space between maize plants, providing more light and reducing intraspecific competition. No significant difference was found between intercropping treatments in terms of cotton yield. The maximum cotton yield was obtained from cotton pure cropping, whereas, the minimum yield was related to one row cotton along with one row maize treatment. Amongst intercropping treatments, the maximum cotton yield was obtained from two rows cotton along with one row maize treatment. The increase in maize and cotton biomass followed a similar trend in both years. The maximum reproductive and vegetative branches, dry matter and leaf area index were related to two rows cotton along with one row maize treatment. The maximum maize leaf area was related to three rows cotton along with one row maize treatment. In general, dry matter accumulation linearly increased 30 days after seed sowing in both maize and cotton plants and reached to its maximum 60 days after seed sowing and then started to decrease due to leaf senescence and abscission. Furthermore, in both species, leaf area index reached to its maximum 69 days after seed sowing and then started to decrease due to canopy closure, shading, leaf senescence and abscission. Mukhala et al, (1999) and Koocheki et al, (2010) have shown intercropping cause a significant increase in leaf area index.
Conclusion
Generally it is concluded that maize and cotton yield in intercropping treatments were higher also traits such as leaf area index and dry matter accumulation in one row maize along with three row cotton was higher than other treatments.

کلیدواژه‌ها [English]

  • Forage yield
  • Lint yield
  • Monopodial branch
  • Sympodial branch
Abdel-Malak, R.R., Abdel-Kader, A.E.M., and El-Razaz, M.M., 1991. Studies on the effect of intercropping maize in cotton fields. Australian Journal of Agricultural Science 22 (1): 337-349.
Akramghaderi, F., Latifi, N., Karnejadi, C., and Rezaei, J., 2002. Environmental effects on germination and seedling growth during seed filling capitulate made of cotton varieties. Journal of Agricultural Sciences and Natural Resources 11(2): 362-375. (In Persian with English Summary)
Andarkhou, S.A., Asadpour, H., and Nowrouzi, S.A., 2006. Improvement of land productivity in intercropping of cotton and sesame unde Mazandaran climatic conditions. 9th Congress of Agronomy and Plant Breeding, Aboureyhan Compus, Tehran, Iran. (In Persian)
Banik, P., 1996. Evaluation of wheat (Triticum aestivum) and legume. Journal of Agronomy and Crop Science 279: 180-102.
Boquet, D.J., Koohce, K.L., and Walker, D.M., 2003. Selected determinate soybean cultivar yield responses to row spacing and planting dates. Agronomy Journal 74: 136-138.
Carrubba, A., Torre, La, R., and Matranga, A., 2002. Cultivation trials of some aromatic and medicinal plants in a semi-arid mediterranean environment. Proceedings of an International Conference on MAP, Acta Horticulture (ISHS) 576: 207-213.
Carruthers, K., Prithiviraj, B.F.Q., Cloutier, D., Martin, R.C., and Smith, D.L., 2000. Intercropping corn with soybean, lupine and forages: yield component responses. European Journal of Agronomy 12: 103- 115.
Dhima, K.V., Lithourgidis, A.S., Vasilakoglouc, I.B., and Dordas, C.A., 2007. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research 100: 249–256.
Edwards, C.A., Lai, R., Madden, P., Miller, R.H., and House, G., 1990. Sustainable Agriculture Systems. Soil and Water Conservation Society, Ankeny, Iowa. pp. 515-532.
Ennahl, I.S., and Earl, H., 2005. Physiological limitation to photosynthetic carbon assimilation in cotton under water stress. Crop Science 45: 2374-2382.
FAOSTAT. http://faostat.fao.org (Available at 2014).
Fininsa, C., 1997. Effect of planting pattern, relative planting date and intra-row spacing on a haricot bean maize intercrop. African Crop Science Journal 5: 15-22.
Gaungwei, D., Xiaobing, L., Stephen, H., Jeffrey, N., Dual, A., and Baoshan, X., 2006. The effect of cover crop management on soil organic matter. Scince Direct 130: 229–239.
Gebyehu, S., and Simane, B., 2006. Genotype × cropping systems interaction in climbing bean (Phaseolus vulgaris L.) grown as sole crop and in association with maize (Zea mays L.) European Journal of Agronomy 24: 396-403.
Gomaa, M.A., 1991. Inter and intra specific competition among cotton and soybean plants. Annual Agricultural Science 29: 757–68.
Goudriaan, J., and Van Laar, H.H., 1993. Modeling Potential Crop Growth Processes. Kluwer Academic Press. pp. 94
Gustave, N.M., Jean, F., Ois, L., and Xavier, D., 2008. Shoot and root competition in potato/maize intercropping: Effects on growth and yield. Journal Environmental and Experimental Botany 64(2): 180-188.
Hemayati, S., Siadat, A., and Sadeghzade, F., 2002. Evaluation of intercropping of two corn hybrids in different densities. Iranian Journal of Agriculture Sciences 25: 73-87.
Jahani, M., Koochaki, A., and Nassiri Mahallati, M., 2008. Comparison of different intercropping arrangements of cumin (Cuminum cyminum ) and lentil (Lens culinaris). Iranian Journal of Field Crops Research 6(1): 67-78. (In Persian with English Summary)
Jokar, M., Ghanbari, A., and Ghadiri, H., 2006. Study of intercropping of maize and cucumber and effect of it’s on controlling weeds. M.Sc. Thesis. Agriculture College University of Zabol, Iran. (In Persian with English Summary)
Kamel, A.S., Sherief, M.N., El-Masry, M.A., Badr, S.K., and Abd El-Aziz, M.A., 1990. Studies on a new intercropping system for maize and cotton in Egypt. Annual Agricultural Science 28(2): 749-759.
Karam F., Masaad R., Sfeir T., Mounzer O., and Rouphael Y., 2005. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions, Agricultural Water Management 72: 119–122.
Khajehpour, M.R., 2008. Industrial Plants. Third Edition. Publisher of Isfahan University Jihad, Iran. pp. 275. (In Persian)
Khan, M.B., Mahboob, A., and Khaliq, A., 2001. Effect of planting patterns and different intercropping systems on the productivity of cotton (Gossypium hirsutum L.) under irrigated conditions of Faisalabad. International Journal of Agriculture and Biology 3(4): 432-435.
Khorramivafa, M., 2006. Intercropping ecology of corn and pumpkin. Ph.D. Thesis in Agronomy, College of Agriculture, University of Tabriz, Iran. (In Persian with English Summary)
Koocheki, A., Allahgani, B., and Najibnia, S., 2010. Evaluation of yield in maize and common bean intercropping. Iranian Journal of Crop Sciences 2: 605-611. (In Persian with English Summary)
Koocheki, A., Fallahpour, F., Khorramdel, S., Jafari, L., 2009. Intercropping wheat (Triticum aestivum L.) with canola (Brassica napus L.) and their effects on yield, yield components, weed density and diversity. Journal of Agroecology 6(1): 11-20. (In Persian with English Summary)
Koocheki, A., Khorramdel, S., Amin Ghafori, A., and Shabahang, J., 2003. Evaluation of radiation interception and use efficiency in row intercropping of borage (Borago officinalis L.) and bean (Phaseolus vulgaris L.). Agroecology 2(3): 60-70. (In Persian with English Summary)
Koocheki, A., Lalehgani, B., and Najibnia, S., 2009. Evaluation of productivity in bean and corn intercropping. Iranian Journal of Field Crops Research 7(2): 605-614. (In Persian with English Summary)
Koocheki, A., Nassiri Mahallati, M., Khorramdel, S., Anvarkhah, S., Sabet Teimouri, M., and Sanjani, S., 2010.  Evaluation of growth indices of hemp (Cannabis sativa L.) and sesame (Sesamum indicum L.) in intercropping with replacement and additive series. Journal of Agroecology 2(1): 30-40. (In Persian with English Summary)
Koocheki, A., Shabahang, J., Khorramdel, S., and Amin Ghafouri, A., 2012. Row intercropping of borage (Borago officinalis L.) with bean (Phaseolus vulgaris L.) on possible evaluating of the best strip width and assessing of its ecological characteristics. Journal of Agroecology 4(1): 1-11. (In Persian with English Summary)
Lithourgidis, A.S., Dordas, C.A., Damalas, C.A., and Vlachostergios, D.N., 2011. Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science5(4): 396-410.
Mead, R., and Willey, R.W., 1980. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture 16: 217-228.
Metwally, A.A., Shafik, M.M., El Metwally, M.A., and Safina, S.A., 2003. Tolerance of some soybean varieties to intercropping. The 10th Conference Environ Science. Suez Canal Univecity. Egyption, pp. 279-293.
Midya, A., Bhattacharjee, K., Ghose, S.S., and Banik, P., 2005. Deferred seeding of black gram in rice field on yield advantages and smothering of weeds. Journal Agronomy Crop Science 191: 195-201.
Moosavian, S., Lorzade, S., Ebrahimpoor, F., and Abdonoor, C., 2011. Effect of nitrogen and mix ratio on grain yield and some morphological characteristics of maize and sunflower in intercropping in northern of Khuzestan region. Iranian Journal of Crop Research 4: 708-716. (In Persian with English Summary)
Moradi, R., Koocheki, A., and Nassiri Mahallati, M., 2017. Evaluation of economical yield and radiation use efficiency of maize and cotton in sole and ‎intercropping systems as affected by different levels of nitrogen. Journal of Crop Production and Processing 7(2):47-59. (In Persian with English Summary)
Mukhala, E., De Jager, J.M., Van Rensburg, L.D., and Walker, S., 1999. Dietary nutrient deficiency in small-scale farming communities in South Africa: Benefits of intercropping maize and beans. Nutrition Research 19: 629-641.
Olowe, I.O., and Adeyemo, A.Y., 2009. Enhanced crop productivity and compatibility through intercropping of sesame and sunflower varieties. Annals of Applied Biology 155: 285–291
Panhwar, M.A., Memon, F.H., Kalhoro, M.A., and Soomro, M.I., 2004. Performance of maize in intercropping systems with soybean under different planting patterns and nitrogen levels. Journal of Applied Science 4(2): 201-204.
Patel, B.R., Dilip, S., and Gupta, L.M., 1999. Effect of irrigation and intercropping on gram and mustard. Indian Journal of Agronomy 2: 283-284.
Rahimi Darabad,  G., Barmaki, M., and Seyed Sharifi, R., 2014. Evaluation of some growth indices at potato and safflower intercropping. Applied Field Crops Research 27(104): 173-179. (In Persian with English Summary)
Rezvan Beidokhti, S., 2004. Comparison of different planting rate in intercropping corn and bean. M.Sc. Thesis. University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
Sarlak, S.H., and Aghaalikhani, M., 2009. Effect of plant density and intercropping ratio on yield of maize and common bean intercropping. Iranian Journal of Crop Sciences 4: 367-380. (In Persian with English Summary)
Schippers, P., and Kropff, M.J., 2001. Competition for light and nitrogen among grassland species: A simulation analysis. Functional Ecology 15: 155-164.
Singh, D., and Kothari, S.K., 1973. Intercropping 19-effects on mustard aphid (Lipaphis erysimi kaltenback) population. Crop Science 37: 1263-1264.
Tomar, J.S., Mackenzie, A.F., Mehuys, G.R., and Ali, I., 1988. Corn growth with foliar nitrogen, soil applied nitrogen, and legume intercrops. Agronomy Journal 80: 802-807.
Tranbath, B.R., 1974. Biomass productivity of mixtures. Advances in Agronomy 26: 177-210.
Tuna, C., and Orak, A., 2007. The role of intercropping on yield potential of common vetch (Vicia sativa L.)/ oat (Avena sativa L.) cultivated in pure stand and mixtures. Journal of Agriculture and Biological Science 2: 14-19.
Vafaeetabar, M.A., and Talat, F., 2009. Qualitative and quantitative characteristics of some promising varieties of cotton in Varamin. Agricultural Science 5: 245-252.
Vandermeer, J., 1989. The ecology of intercropping. Cambridge University Press, New York. USA.
Vasilakoglou, I.B., Lithourgididis, A.S., and Dhima, K.V., 2005. Assessing common vetch-cereal intercrops for suppression of wild oat. Proceeding of the 13th international symposium. Session 5. European weed Research society. Bari. Italy. p. 287–305.
Yin, W., Chai, Q., Guo, Y., Feng, F., Zhao, C., Yu, A., and Hu, F., 2016. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. Journal of Agricultural Science 8(4): 26-42.
Zaefarian, F., and Bagheri Shirvan, M., 2014. Effect of intercropping different ratios on yield of soybean, sweet basil and borage. Journal of Crop Management 16(1): 197-214. (In Persian with English Summary)
CAPTCHA Image