##plugins.themes.bootstrap3.article.main##

الهه برومند رضازاده علیرضا کوچکی پرویز رضوانی مقدم مهدی نصیری محلاتی امیر لکزیان

چکیده

ترسیب کربن به معنای افزایش دائمی ذخیره کربن در خاک، ماده گیاهی یا آب بوده و خاک به عنوان بزرگ‌ترین مخزن کربن در بوم‌نظام­های خشکی دنیا، نقش مهمی در چرخه جهانی کربن دارد. هدف این مطالعه، مدل­سازی رابطه سرعت تجزیه بقایای گیاهان زراعی با رژیم‌های رطوبتی خاک و نسبت کربن به نیتروژن بقایا و نیز محاسبه میزان کربن قابل ترسیب در کشت آبی پنج محصول زراعی عمده در ایران بود. به همین منظور تجزیه بقایای گیاهی گندم (Triticum aestivum L.)، ذرت (Zea mays L.)، کلزا (Brassica napus L.)، پنبه (Gossypium herbaceum L.)، سویا (Glycine max L.) در رژیم‌های مختلف رطوبتی خاک طی 390 روز انکوباسیون مورد مطالعه قرار گرفت و از داده‌های حاصله برای مدل­سازی تجزیه بقایا استفاده گردید. همچنین محاسبه میزان کربن قابل ترسیب در این محصولات در پنج سال زراعی بر اساس عملکرد، شاخص برداشت و نسبت اندام‌های هوایی به ریشه در سه سناریوی بازگشت کامل بقایا، بازگشت 50 درصد بقایا و حذف کامل بقایای اندام‌های هوایی و سه سناریوی رطوبتی 100، 60 و 30 درصد ظرفیت مزرعه انجام شد. مقایسه میزان کربن قابل ترسیب در استان‌های مختلف نشان داد که در کشت گندم: استان‌های کرمانشاه و سیستان و بلوچستان، ذرت: قزوین و خراسان جنوبی، کلزا: اصفهان و بوشهر، پنبه: آذربایجان شرقی و هرمزگان، سویا: اردبیل و آذربایجان شرقی به ترتیب بیشترین و کمترین مقدار کربن قابل ترسیب را دارا بودند. با افزایش میزان رطوبت از 30 به 60 و 100 درصد ظرفیت مزرعه و همچنین با کاهش درصد برگشت بقایا به خاک از 100 به 50 درصد و حذف کامل بقایا، میزان کربن قابل ترسیب در خاک همه محصولات مورد مطالعه کاهش یافت. در بین محصولات مورد مطالعه، ذرت و سویا به ترتیب از بالاترین و پایین‌ترین میزان کربن قابل ترسیب برخوردار بودند. همچنین، در بین استان‌های مختلف از نظر مجموع کربن قابل ترسیب محصولات مورد مطالعه، استان‌ اردبیل بیشترین و استان‌ سیستان و بلوچستان کمترین مقدار کربن قابل ترسیب در خاک را دارا بودند.

جزئیات مقاله

کلمات کلیدی

بازگشت بقایا, درصد تجزیه, رطوبت خاک

مراجع
Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439–449.
Belay-Tedla, A., Zhou, X., Su, B., Shiqiang Wan, S., and Luo, Y. 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology and Biochemistry 41: 110–116.
Berg, B., Berg, M.P., Bottner, P., Box, E., Breymeyer, A., Calvan De Anta, R., Couteaux, M.M., Esudero, A., Gallardo, A., Kratz, W., Madeira, M., Malkonen, E., McClaugherty, C.A., Meentemeyer, V., Munoz, F., Piussi, P., Remacle, J., and Virzo de Santo, A. 1993. Litter mass loss in pine forests of Europe and Eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20: 127–153.
Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A., and VandenBygaart, A.J. 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems and Environment 118: 29–42.
Bremner, J.M. 1970. Nitrogen total, regular kjeldahl method, In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed. Agronomy 9(1). A.S.A. Ins., S.S.S.A. Inc., Madison Publisher, Wisconsin., USA, pp. 610-616.
Bunnell, F.L., Tait, D.E.N., Flanagan, P.W., and Van Cleve, K. 1977. Microbial respiration and substrate weight loss. I. A general model of the influences of abiotic variables. Soil Biology and Biochemistry 9: 33–40.
Buyanovsky, G.A., and Wagner, G.H. 1986. Post-harvest residue input to cropland. Plant and Soil 93: 57-65.
Chen, H., Billen, N., Stahr, K., and Kuzyakov, Y. 2007. Effects of nitrogen and intensive mixing on decomposition of 14C-labelled maize (Zea mays L.) residue in soils of different land use types. Soil and Tillage Research 96: 114–123.
Couteautx, M., Bottner, P., and Berg, B. 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution 10: 63-66.
Crohn, D.M., and Valenzuela-Solano, C. 2003. Modeling temperature effects on decomposition. Journal of Environmental Engineering 129: 1149-1156.
Dijkstra, F.A., and Cheng, W. 2007. Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biology and Biochemistry 39: 2264–2274.
Dou, F. 2005. Long-term tillage, cropping sequence, and nitrogen fertilization effects on soil carbon and nitrogen dynamics. PhD thesis. Texas A & M University.
Fishman, J. 2003. Overview: Atmospheric Chemistry. In: Potter, T.D. and Colman, B.R. (Eds.), Handbook of Weather, Climate and Water, Atmospheric Chemistry, Hydrology and Social Impacts. A John Wiley and Sons, Inc., Publication. pp: 966.
Hansen, E.M., Christensen, B.T., Jensen, L.S., and Kristensen, K. 2004. Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass and Bioenergy 26: 97-105.
Hardy, J.T. 2003. Climate Change, Causes Effects and Solutions. John Wiley and Sons Ltd. pp. 247.
Haynes, R.J. 1986. Mineral nitrogen in the plant-soil system. Academic Press, Toronto.
Hemwong, S., Cadisch, G., Toomsan, B., Limpinuntana, V., Vityakon, P., and Patanothai, A. 2008. Dynamics of residue decomposition and N2 fixation of grain legumes upon sugarcane residue retention as an alternative to burning. Soil and Tillage Research 99: 84–97.
Hobbie, S.E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs 66: 503–522.
Howard, D.M., and Howard, P.J.A. 1993. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biology and Biochemistry 25: 1537–1546.
Jenkinson, D.S., Adams, D.E., and Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304–306.
Kabba, B.S., and Aulakh, M.S. 2004. Climatic conditions and crop residue quality differentially affect N, P, and S mineralization in soils with contrasting P status. Journal of Plant Nutrition and Soil Science 167: 596–601.
Kätterer, T., Reichstein, M., André, O., and Lomander, A. 1998. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biology and Fertility of Soils 27: 258–262.
Kirschbaum, M.U.F. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27: 753–760.
Lal, R. 2002. Soil carbon dynamics in cropland and rangeland. Environmental Pollution 116: 353–362.
Lal, R., and Kimble, J.M. 1997. Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49: 243-253.
Larson, W.E., Clapp, C.E., Pierre, W.H., and Morachan, Y.B. 1972. Effects of increasing amounts of organic residues on continuous corn: II. Organic carbon, nitrogen, phosphorus and sulfur. Agronomy Journal 64: 204-208.
Lavelle, P., Blanchart, E., Martin, A., Martin, S., Spain, A., Toutan, F., Barois, I., and Schaefer, R. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25: 130–150.
Li, C., Frolking, S., and Harriss, R.C. 1994. Modeling carbon biogeochemistry in agricultural soils. Global Biochemistry Cycles 8: 237-254.
Luna-Orea, P., Wagger, M.G., and Gumpertz, L.M. 1996. Decomposition and nutrient release dynamics of two tropical legume cover crops. Agronomy Journal 88: 758–764.
Lupwayi, N.Z., Clayton, G.W., O’Donovan, J.T., Harker, K.N., Turkington, T.K., and Soon, Y.K. 2007. Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil and Tillage Research 95: 231–239.
Meentemeyer, V. 1978. Macroclimatic and lignin control of litter decomposition rates. Ecology 59: 465–472.
Menzel, A. and Fabian, P. 1999. Growing season extended in Europe. Nature. 397: 659.
Nassiri Mahallati, M., and Koocheki, A. 2006. Analysis of agroclimatic indices of Iran under future climate change scenarios. Iranian Journal of Field Crops Research 4: 169-182. (In Persian with English Summary)
Parshotam, A., Saggar, S., Tate, K. and Parfitt, R. 2001. Modelling organic matter dynamics in New Zealand soils. Environment International 27: 111 –119.
Paul, E.A., and Clark, F.E. 1996. Soil Microbiology and Biochemistry. Academic Press, San Diego.
Paustian, K., Collins, H.P., and Paul, E.A. 1997. Management controls on soil carbon. In: Paul, E.A., Paustian, K., Elliot, E.T., Cole, C.V. (Eds) Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America. CRC Press, Boca Raton, Florida.
Paustian, K., Six, J., Elliott, E.T., and Hunt, H.W. 2000. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1): 147–163.
PeterJohn, W.T., Melillo, J.M., Bowles, F.P., and Steudler, P.A. 1993. Soil warming and trace gas fluxes: experimental design and preliminary flux results. Oecologia 93: 18–24.
Rosenzweig, C., and Parry, M.L. 1994. Potential Impacts of climate change on world food supply. Nature 367: 133-138.
Scorer, R.S. 2002. Air Pollution Meteorology. Horwood Publishing. pp. 150.
Swift, M.J., Heal, O.W., and Anderson, J.M. 1979. Decomposition in Terrestrial Ecosystems. Blackwell, Oxford.
Thorburn, P.J., Probert, M.E., and Robertson, F.A. 2001. Modelling decomposition of sugar cane surface residues with APSIM-Residue. Field Crops Research 70: 223-232.
Vazquez, R.I., Stinner, B.R., and McCartney, D.A. 2003. Corn and weed residue decomposition in northeast Ohio organic and conventional dairy farms. Agriculture, Ecosystems and Environment 95: 559–565.
Verma, S.B., Dobermann, A., Cassman, K.G., Walters, D.T., Knops, J.M., Arkebauer, T.J., Suyker, A.E., Burba, G.G., Amos, B., Yang, H., Ginting, D., Hubbard, K.G., Gitelson, A.A., and Walter-Shea, E.A. 2005. Annual carbon dioxide exchange in irrigated and rainfed-based agroecosystems. Agriculture and Forest Meteorology 131: 77-96.
Vitousek, P.M., Turner, D.R., Parton, W.J., and Sanford, R.L. 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology 75: 418–429.
Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63: 251-263.
Winkler, J.P., Cherry, R.S., and Schelsinger, W.H. 1996. The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biology and Biochemistry 28: 1067–1072.
Yan, H., Cao, M., Liu, J., and Tao, B. 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems and Environment 121: 325-335.
Yang, L., Pan, J., Shao, Y., Chen, J.M., Ju, W.M., Shi, X., and Yuan, S. 2007. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China. Journal of Environmental Management 85: 690–695.
Zhou, X., Wan, S., and Luo, Y. 2007. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology 13: 761–775.
ارجاع به مقاله
برومند رضازاده ا., کوچکی ع., رضوانی مقدم پ., نصیری محلاتی م., & لکزیان ا. (2018). برآورد میزان ترسیب کربن در بوم‌نظام‌های زراعی ایران با استفاده از مدل¬های تجربی. بوم شناسی کشاورزی, 11(1), 103-122. https://doi.org/10.22067/jag.v11i1.50344
نوع مقاله
علمی - پژوهشی

مقالات بیشتر خوانده شده از همین نویسنده

1 2 3 4 5 6 7 8 9 10 > >>