ارزیابی تراکم، زیست‌توده و تنوع زیستی علف‌های هرز در کشت مخلوط ردیفی کاهو پیچ (Lactuca sativa L. var. capitata) و گل عسلی (Lobularia maritima (L.) Desv.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد،مشهد، ایران

2 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به‌منظور بررسی اثر الگوهای کشت مخلوط ردیفی کاهو پیچ و گل عسلی بر تراکم، زیست­توده و تنوع زیستی علف­های هرز، آزمایشی در قالب طرح بلوک­های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در سال زراعی 1394- 1393 اجرا شد. تیمارهای آزمایش شامل الگوهای کشت مخلوط ردیفی 1 ردیف کاهو پیچ + 1 ردیف گل عسلی (1:1)، 2 ردیف کاهو پیچ + 2 ردیف گل عسلی (2:2)، 3 ردیف کاهو پیچ + 3 ردیف گل عسلی (3:3) و کشت خالص دو گونه بود. نتایج نشان داد که اثر الگوهای کشت مخلوط ردیفی کاهو پیچ و گل عسلی بر تمامی صفات مورد مطالعه در هر دو مرحله نمونه‌برداری معنی­دار بود. بیشترین تراکم علف­های هرز در الگوی کاشت 2:2 به‌ترتیب با 4/282 و 03/122 بوته در مترمربع در هر دو مرحله نمونه‌برداری مشاهده شد. در مرحله اول و دوم نمونه­برداری، بیشترین زیست‌توده علف­های هرز به‌ترتیب در الگوی کاشت 1:1 و 2:2 با 33/58 و 08/62 گرم در مترمربع مشاهده شد. همچنین، بیشترین مقدار شاخص تنوع شانون- وینر، در الگوی کاشت 2:2 و 1:1 به‌ترتیب با 53/0 و 37/0 در مرحله اول و دوم نمونه‌برداری مشاهده شد. بیشترین مقدار شاخص تنوع سیمپسون، در الگوی کاشت 2:2 به‌ترتیب با 66/0 و 46/0 در هر دو مرحله نمونه‌برداری مشاهده شد و در نهایت، بیشترین مقدار شاخص غنای گونه­ای مارگالف، در الگوی کشت خالص کاهو پیچ و الگوی کشت مخلوط ردیفی 1:1 به‌ترتیب با 48/1 و 63/1 در مرحله اول و دوم نمونه‌برداری مشاهده شد. به­طور کلی، الگوهای کشت مخلوط ردیفی 1 ردیف کاهو پیچ + 1 ردیف گل عسلی (1:1) و 2 ردیف کاهو پیچ + 2 ردیف گل عسلی (2:2)، بیشترین میزان را از نظر اکثر شاخص­های تنوع، یکنواختی و غنای گونه­ای مورد بررسی در این تحقیق دارا بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Density, Dry Weight and Biodiversity of Weeds in Row Intercropping of Lettuce (Lactuca sativa var. capitata L.) and Alyssum (Lobularia maritima (L.) Desv.)

نویسندگان [English]

  • Mohammad Hassan Hatefi Farajian 1
  • Alireza Koocheki 2
  • Mahdi Nassiri Mahallati 3
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
3 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
چکیده [English]

Introduction
Diversification through the use of intercropping systems is known to enhance stability. Intercropping is potentially able to reduce pests and weeds, increase the system production and increase the exploitation of available environmental resources, compared to monocultures. Ronald and Charles (2012), stated that weeds biomass decreased in the intercropping of maize and squash, due to squash ghosting on weeds. They also reported that the intercropping of pelargoniums (Pelargonium sp.) and mint (Mentha arvensis L.) decreased weed growth and biomass.
Materials and Methods
This experiment was conducted in 2014-2015 growing season based on a randomized complete block design with three replications at Agricultural Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad. Experimental treatments were 1 row lettuce + 1 row alyssum (1:1), 2 row lettuce + 2 row alyssum (2:2), 3 row lettuce + 3 row alyssum (3:3), monocultures of lettuce and alyssum. Alyssum transplants were sown on 08/04/2015 and lettuce transplants were sown on 21/04/2015 in rows with a distance of 50 cm. During the growing season, composition of weed species together with weed density and dry matter were measure at 2 time in randomly sampled 0.6×0.6 m quadrates. Using the species frequency Margalef richness index and several diversity indices including Shannon- Weiner and Simpson’s index and species evenness were calculated for each treatment.
Results and discussion
At first and second sampling, the highest density of weeds was observed in 2 row Lettuce + 2 row alyssum (2:2) with 282.4 and 122.03 plant per square meter, respectively. The lowest density of weeds was observed through the first and the second sampling, respectively, in Lettuce monoculture with 111.11 plant per square meter and in 1 row lettuce + 1 row alyssum (1:1) with 41.66 plant per square meter, respectively. In the first sampling, highest and lowest the Shannon-Wiener diversity index were observed in 2 row lettuce + 2 row alyssum (2:2) and 3 row lettuce + 3 row alyssum (3:3) with 0.53 and 0.35, respectively. In the second sampling, highest and lowest the Shannon-Wiener diversity index were observed, in 1 row lettuce + 1 row alyssum (1:1) and 2 row lettuce + 2 row alyssum (2:2) with 0.37 and 0.12, respectively. Also, in the first sampling, highest and lowest the Simpson’s diversity index were observed, in 2 row lettuce + 2 row alyssum (2:2) and 3 row lettuce + 3 row alyssum (3:3) with 0.66 and 0.44, respectively. In the second sampling, highest and lowest the Simpson’s diversity index were observed, in 2 row lettuce + 2 row alyssum (2:2) and alyssum monoculture with 0.46 and 0.05, respectively. In the first sampling, highest and lowest the Shannon-Wiener evenness index were observed, in 2 row lettuce + 2 row alyssum (2:2) and 3 row lettuce + 3 row alyssum (3:3) with 0.41 and 0.25, respectively. In the second sampling, highest and lowest the Shannon-Wiener evenness index were observed in lettuce monoculture and 2 row lettuce + 2 row alyssum (2:2) with 0.31 and 0.11, respectively. In the first sampling, highest and lowest the Margalef richness index were observed, in lettuce monoculture and 3 row lettuce + 3 row alyssum (3:3) with 1.48 and 0.98, respectively. In the second sampling, highest and lowest the Margalef richness index in 1 row lettuce + 1 row alyssum (1:1) and alyssum monoculture with 1.63 and 0.53, respectively.
Conclusion
The results showed that the ecological characteristics of ecosystems such as diversity and density of weeds were affected by row intercropping patterns. In almost all cases except Margalef species richness index, intercropping 2 row lettuce + 2 row alyssum was better compared to other patterns of cropping. It can be concluded that the most important advantage of intercropping is stability of canopy structure in terms of weeds and crop population and therefore enhancing the competition ability of the crops.

 

کلیدواژه‌ها [English]

  • Planting pattern
  • Shannon-Weiner diversity index
  • Simpson’s diversity index
  • Margalef species richness index
Abadian, H., Yarnia, M., Pirdashti, H., Abasi, R., and Farahvash, F., 2014. Evaluation of basil (Ocimum basilicum) and cowpea (Vigna unguiculata) intercropping at different nitrogen fertilizer levels and its effect on weed density. Specialized Semiannual Journal of Iranian Weeds Knowledge 10(2): 187-199. (In Persian with English Summary)
Agegnehu, G., Ghizaw, A., and Sinebo, W., 2006. Yield performance and land use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal Agronomy 25: 202-207. https://doi.org/10.1016/j.eja.2006.05.002
Asadi, G., Ghorbani, R., and Azizi, E., 2014. The effect of manure rates on diversity and density of weeds in intercropping of spinach (Spinacia oleracea L.) and garlic (Allium sativum L.). Journal of Plant Protection 28(3): 325-337. (In Persian with English Summary). https://doi.org/10.22067/JPP.V28I3.43563
Azizi, G., Koocheki, A., Nassiri Mahallati, M., and Rezvani Moghaddam, P., 2009. Effect of plant diversity and nutrient resource on weed composition and density in different cropping systems. Journal of Iranian Field Crop Research 7(1): 115-125. (In Persian with English Summary)
Baumann, D.T., Bastiaans, L., and Kropff, M.J., 2001. Effects of intercropping on growth and reproductive capacity of late-emerging Senecio vulgaris L., with special reference to competition for light. Annals of Botany 87: 209-217. DOI: 10.1006/anbo.2000.1320
Baumann, D.T., Kropff, M.J., and Bastiaans, L., 2000. Intercropping leeks to suppress weeds. Weed Research 40: 361-376. DOI: 10.1046/j.1365-3180.2000.00197.x
Bedoussac, L., and Justes, E., 2010. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant and Soil 330: 37-54. https://doi.org/10.1007/s11104-010-0303-8
Blackshow, R.E., Molnar, L.J., Chevalier, D.F., and Lindwall, C.W., 1998. Factors affecting of the weed-sensing detect spray system. Weed Science 46: 127-137.
Bugg, R.L., Colfer, R.G., Chaney, W.E., Smith, H.A., and Cannon, J., 2008. Flower flies (Syrphidae) and other biological control agents for aphids in vegetable crops. University of California, Division of Agriculture and Natural Resources. https://doi.org/10.3733/ucanr.8285
Corre-Hellou, G., Dibet, A., Hauggaard-Nielsen, H., Crozat, Y., Gooding, M., Ambus, P., Dahlmann, C., von Fragstein, P., Pristeri, A., Monti, M., and Jensen, E.S., 2011. The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Research 122(3): 264-272. https://doi.org/10.1016/j.fcr.2011.04.004
Ejtehadi, H., Sepehry, A., and Akkafi, H.R., 2009. Methods of Measuring Biodiversity. Ferdowsi University of Mashhad Press, Iran. 228 p. (In Persian)
Fiedler, A.K., Landis, D.A., and Wratten, S.D., 2008. Maximizing ecosystem services from conservation biological control: the role of habitat management. Biological Control 45: 254–271. https://doi.org/10.1016/j.biocontrol.2007.12.009
Ghasemi Ghahsareh, M., and Kafi, M., 2012. Scientific and Practical Floriculture. Author Press, 420 p.
Gliessman, S.R., 1995. Sustainable agriculture: An agroecological perspective. Advances in Plant Pathology II: 45-57. https://doi.org/10.1016/S0736-4539(06)80005-X
Gliessman, S.R., 1997. Agroecology: Ecological Processes in Sustainable Agriculture. Arbor Press, 357 p.
Hyvonen, T., and Huusela-Veistola, E., 2008. Arable weeds as indicators of agricultural intensity-A case study from Finland. Biological Conservation 141: 2857-2864. https://doi.org/10.1016/j.biocon.2008.08.022
Javanmardi, J., 2010. Growing organic vegetables. University of Mashhad Press, Iran. 349 p. (In Persian)
Karimian, K., 2015. Investigation of yield, radiation use efficiency and biodiversity of arthropods and weeds in wheat and canola intercropping. Ph.D. Dissertation Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian with English Summary)
Kenny, A.J., and Krebs, C.J., 2001. Ecological Methodology program package, version 7.0. University of British Columbia, https://ecological-methodology.software.informer.com/7.0/.
Khorramdel, S., Mahmoodi, G., Abdollahi, F., and Hasanzadeh, H.R., 2014. Evaluation of growth indices and diversity of weeds in replacement and additive intercropping series of ajowan (Trachyspermum ammi L.) with bean (Phaseolus vulgaris L.). Research in Crop Ecosystems 1(3): 59-70. (In Persian with English Summary)
Koocheki, A., and Khajeh Hosseini, M., 2008. Modern Agronomy. University of Mashhad Press, Iran. 704 p. (In Persian)
Koocheki, A., Asadi, G.A., Ghorbani, R., and Azizi, E., 2013. Investigation of marigold interference effect on weed composition and diversity of tomato in an intercropping system. Journal of Environmental Sciences 11(2): 23-34. (In Persian with English Summary)
Koocheki., A., Nassiri Mahallati, M., and Sanjani, S., 2013. Evaluation of weed diversity and modeling light interception and distribution in multiple and sole cropping of millet (Setaria italica L.) and bean (Phaseolus vulgaris L.). Iranian Journal of Field Crops Research 11(2): 215-225. (In Persian with English Summary). Doi: 10.22067/GSC.V11I2.26131
Koocheki, A., Shabahang, J., Khorramdel, S., and Amin Ghafouri, A., 2012. Row intercropping of borage (Borago officinalis L.) with bean (Phaseolus vulgaris L.) on possible evaluating of the best strip width and assessing of its ecological characteristics. Journal of Agroecology 4(1): 1-11. (In Persian with English Summary). Doi: 10.22067/jag.v4i1.14951
Legere, A., Stevenson, F.C., and Benoit, D.L., 2005. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Research 45: 303-315. https://doi.org/10.1111/j.1365-3180.2005.00459.x
Majnoon Hosseini, N., and Colar, G.S., 1988. Study of weed control in mixed cropping of cowpea and mung bean. Iranian Journal of Agriculture Science 19: 9-12. (In Persian with English Summary)
Midya, A., Bhattacharjee, K., Ghose, S.S., and Banik, S.D., 2005. Deferred seeding of blackgram (Phaseolus mungo L.) in rice (Oryza sativa L.) field on yield advantages and smothering of weeds. Journal of Agronomy and Crop Science 191: 195-201. https://doi.org/10.1111/j.1439-037X.2005.00157.x
Mohler, C.L., and Liebman, M., 1987. Weed productivity and composition in sole crops and intercrops of barley and field pea. Journal of Applied Ecology 24: 685-699. https://doi.org/10.2307/2403903
Moody, K., and Shett, S.V.R., 1989. Weed management in intercrops, on Proc. Int. Workshop intercropping. ICRISAT. Hyderabad India, p. 229-237.
Park, S.E., Benjamin, L.R., and Watkinson, A.R., 2002. Comparing biological productivity in cropping systems: A competition approach. The Journal of Applied Ecology 39: 416-426. https://doi.org/10.1046/j.1365-2664.2002.00732.x
Rastgoo, S., Aynehband, A., and Fateh, E., 2013. Study of the properties of the weed communities in the mixture of sesame and mung bean using diversity indices. The Second National Congress on Organic and Conventional Agriculture, Ardabil, Iran. p. 295-299. (In Persian)
Rao, B.R.R., 2002. Biomass yield, essential oil composition of rose-scented geranium (Pelargonium species) as influenced by row spacing and intercropping with corn mint (Mentha arvensis L. f. Piperascens Malinv). Industrial Crops and Products 16: 133-144. https://doi.org/10.1016/S0926-6690(02)00038-9
Rezazadeh, M., 2016. The effect of row intercropping of fenugreek and tomato on competition indices and species diversity of weeds, pests and disease. M.Sc. Thesis Agriculture, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian with English Summary)
Ronald, M., and Charles, K., 2012. Weed suppression and component crops response in maize/pumpkin intercropping systems in Zimbabwe. Journal of Agriculture Science 4(7): 231-236. DOI:10.5539/jas.v4n7p231
Sanjani, S., Hosseini, M.B., Chaichi, M.R., and Rezvan Beidokhti, S., 2009. Effect of additive intercropping sorghum: cowpea on weed biomass and density in limited irrigation system. Iranian Journal of Field Crops Research 7(1): 85-95. (In Persian with English Summary)
Smith, H.A., and Chaney, W.E., 2007. A survey of syrphid predators of Nasonovia ribisnigri in organic lettuce on the Central Coast of California. Journal of Economic Entomology 100: 39–48. DOI: 10.1603/0022-0493(2007)100[39:asospo]2.0.co;2
Smith, H.A., Chaney, W.E., and Bensen, T.A., 2008. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California’s Central Coast. Journal of Economic Entomology 101: 1526–1532. https://doi.org/10.1603/0022-0493(2008)101[1526:roslao]2.0.co;2
 
CAPTCHA Image