بررسی توانایی تجزیه زیستی کاه و کلش گندم (Tritichum aestivum L.) توسط گونه‌های مختلف جنس تریکودرما (Trichoderma spp.)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

2 گروه بیوتکنولوژی و بهنژادی گیاهی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

استفاده بهینه از ضایعات کشاورزی بعلت بازیافت و امکان تولید مواد با ارزش افزوده، مزایای اقتصادی و اکولوژیکی فراوانی را دارا می باشد. استفاده از روش بیولوژیکی به منظور تجزیه ضایعات کشاورزی روشی جدید برای بهبود قابلیت هضم این مواد و تسهیل تجزیه توسط سایر میکروارگانیسم‌ها می‌باشد. دراین مطالعه قابلیت تجزیه زیستی چندین گونه و همچنین جدایه از جنس تریکودرما روی کاه و کلش گندم انجام شد. دو هفته پس از تلقیح حدایه ها به کاه وکلش، خشک کردن آنها در دمای 75 درجه سانتی گراد، نمونه‌ها را وزن کرده و کاهش فیبرهای شوینده اسیدی (ADF) و فیبرهای شوینده خنثی (NDF) برای هر نمونه در اثر رشد قارچ در مقایسه با نمونه شاهد بررسی گردید. نتایج نشان داد که تجزیه زیستی ضایعات گیاهی به گونه قارچی و حتی جدایه آن بستگی دارد. NDF و ADF کاه و کلش گندم توسط گونه‌های تریکودرما ریسه‌ای، لانگی‌براچیاتوم بیشتر از سایر گونه‌ها کاهش یافت. بطور کلی کاهش NDF ضایعات کشاورزی توسط قارچ نسبت به ADF بیشتر بود. اگرچه تریکودرما ریسه‌ای مقدار ADF کاه و کلش گندم را کاهش بیشتری داد. بنابراین برای بهبود قابلیت هضم و همچنین کوتاه نمودن مدت زمان کمپوست ‌سازی، تیمارکردن کاه وکلش و بقایای گندم با قارچ تریکودرما و بویژه گونه‌های ریسه‌ای و لانگی‌براچیاتوم می‌تواند از کارآیی بهتری برخوردار باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Biodegradation of wheat straw by different isolates of Trichoderma spp.

نویسندگان [English]

  • Alireza Astaraei 1
  • Mohammad Farsi 2
  • Ali Pakdin Parizi 2
  • Marjan Ghaemi 1
  • Farnoosh Fallahpour 3
1 Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2 Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber) ADF and NDF (Neutral Detergent Fiber) reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

کلیدواژه‌ها [English]

  • Acid detergent fiber
  • Fungi
  • Neutral detergent fiber
  • Wheat litters
1- Adams, J.D.W., and Frostick, L.E. 2007. Investigation microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. University of Hull. Journal of Bioresource Technology 99: 1097-1102.
2- Ashraf, B., Shahid, F., and Adam, T. 2007. Association of fungi, bacterial and actinomycetes with different composts. University of Karachi, Pakistan. Department of Microbiology. Journal of Botany 39(6):2141-2151.
3- Baig, M.M.V., Baig, M.L.B., Baig, M.I.A., and Yasmeen, M. 2004. Saccharification of banana agro-waste by cellulolytic enzymes. African Journal of Biotechnology 3(9): 447-450
4- Blackshaw, R.E., and Lindwall, C.W. 1996. Species, herbicide and tillage effects on surface crop residue cover during fallow. Canadaian Journal of Soil Science 75: 559-565.
5- Brown, J.A., Collin, S.A., and Wood, T.M. 1987. Enhanced enzyme production by the Cellulolytic Fungus Penicillium pinophitum, Mutant Strain NTC 111/6. Enzyme and Microbial Technology 9: 176-180.
6- Bueno, P., Tapias, R., Lopez, F., and Diaz, M.J. 2008. Optimizing composting parameters for nitrogen conservation in composting. Journal of Bioresource Technology 99: 5069-5077.
7- Caritas, U.O., and Humphrey, C.N. 2006. Effect of acid hydrolysis of Garcinia kola (bitter kola) pulp waste on the production of CM-cellulase and β-glucosidase using Aspergillus niger. African Journal of Biotechnology 5(10): 819-822.
8- Chang, S.T., and Miles, P.G. 2004. Mushrooms: Cultivation, Nutritional Value, Mmedicinal Effect, and Environmental Impact. (2nd Ed.): CRC Press. pP. 447- 451.
9- Cuevas, V.C. 2005. Training Course on Preparation of Trichoderma Compost Activator in Rapid Composting Technology. IBS, CAS, UPLB:1-11.
10- Espiritu, B.M., and Mina, J.T. 1993. Mass Production of Bio-Organic Fertilizers. National Institute of Molecular Biology and Biotechnology (BIOTECH-UPLB). 45-48.
11- Gonzalez, R., and Rinker, D.L. 2005. Compatibility of ammonia suppressants used in poultry litter with mushroom compost preparation and production. Journal of Bioresource Technology 97:1679-1689.
12- Jalk, D., Nerud, R., and Siroka, P. 1998. The effectiveness of biological treatment of wheat straw by white rot fungi. Folia Microbiologica Journal 43: 687-689.
13- Moore, D., Chiu, S.W. 2001. Fungal Products as Food. Fungal Diversity Press, Hong Kong. Chapter 10 in Bio-Exploitation of Filamentous Fungi. 223-251.
14- Muller, M.M., Sundman, V.O., Soininvaara, V., and Merilainen, A. 1988. Effect of chemical composition on release of nitrogen from agricultural plant materials decomposing in soil under field conditions. Biology and Fertility of Soil Journal 6: 78-83.
15- Ryckeboer, J., Mergaert, J., Vaes, K. Klammer, S., Clercq, D., Coosemnas, D.J., Insam, H., and Swings, J. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Journal of Annals of Microbiology 53(4): 349-410.
16- Safari Sinegani, A.A., Emtiazi, G., Hajrasuliha, S., and Shariatmadari, H. 2005. Biodegradation of some agricultural residues by fungi in agitated submerged cultures. African Journal of Biotechnology 4(10): 1058-1061.
17- Salar, R.K., and Aneja, K.R. 2007. Significance of thermophilic fungi in mushroom compost preparation: effect on growth and yield of Agaricus bisporus (Lange) sing. Journal of Agricultural Technology 3(2): 241-253.
18- Savoie, J.M., and Libmond, S. 1994. Stimulation of environmentally controlled mushroom composting by polysaccharidases. World Journal of Microbiology and Biotechnology 10: 313-319.
19- Scheuerell, S., and Mahafee, W. 2002. Assessing aerated and non-aerated watery fermented compost tea and Trichoderma harzianum T-22 for control of powdery mildew (Sphaerotheca pannos var. rosae) of rose in the Willamette valley, Oregon. Phytopathology 90: 67-69.
20- Senger, C.C.D., Kozloski, G.V., Bonnecarrère Sanchez, L.M., Mesquita, F.R., Alves, T.P., and Castagnino, G.S. 2008. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology Journal 146: 169-174.
21- Sharma, H.S.S. 1996. Compositional analysis of neutral detergent, acid detergent, lignin and humus fractions of mushroom compost. Thermochimica Acta. 285(2): 211-220.
22- Straatsma, G., Gerrits, J., Thissen, J., and Amsing, J. 1999. Adjustment of the composting process for mushroom cultivation based on initial substrate composition. Mushroom Experimental Station, The Netherlands Journal of Bioresource Technology 72:67-74.
23- Suman, B.C., and Sharma, V.P., 2005. Mushroom Cultivation, Processing and Uses. Agrobios, (India): 347- 349.
24- Summerell, B.A., and Burgess, L. W. 1989. Decomposition and chemical composition of cereal straw. Soil Biology and Biochemistry 21: 551-559.
25- Tang, L.G., Hon, D.N.S., Pan, S.H., Zhu, Y.Q., Wang, Z., and Wang, Z.Z. 1996. Evaluation of microcrystalline cellulose changes in ultra structural characteristics during preliminary acid hydrolysis. Journal of Applied Polymer Science 59(3): 483 - 488.
26- Velazquez-Cedeno, M., Farnet, A.M., Mata, G., and Savoie, J.M. 2008. Role of Bacillus spp. In antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates. Journal of Bioresource Technology 99(15):6966-73.
27- Wang, T.H., Wang, T.L., Zhi-Hong, W.U., Shi-Li, L.I.U., Yi, L.U., and Yin-Bo, Q.U. 2004. Novel cellulase profile of Trichoderma reesei strains constructed by cbh1 gene replacement with EG3 gene expression cassette. Acta Biochimica et Biophysica Sinica 36(10): 667-672.
28- Wiedow, D., Baum, C., and Leinweber, A. 2007. Inoculation with Trichoderma saturnisporum accelerates wheat straw decomposition on soil. Archives of Agronomy and Soil Science 53: 1-12.
29- Zaldivar, M., Velasquez, J.C., Contreras, I., and Perez, L.M. 2001. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electronic Journal of Biotechnology 6(2): 8-17.
CAPTCHA Image