مدل ساختاری عوامل مؤثر روی به‌کارگیری شالی‌کاران از کودهای آلی به هنگام کشت برنج (Oryza sativa) در شهرستان دزفول

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ترویج و آموزش کشاورزی، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.

چکیده

برنج یکی از اصلی‏ترین غذاهای ایرانی است، امّا استفاده بی‏رویه از نهاده‏های شیمیایی در تولید این محصول از کیفیت و خواص آن کاسته است، تحقیقات قبلی نشان می‏دهد که استفاده از کودهای آلی در کشت برنج می‏تواند مواد مغذی مورد نیاز خاک برای تولید این محصول را فراهم کند، امّا شالی‌کاران تمایل چندانی به استفاده آن در کشت برنج ندارند. در راستای این مهم، پژوهش حاضر با هدف کلی بررسی عوامل مؤثر بر استفاده شالی‌کاران از کودهای آلی به هنگام کشت برنج در شهرستان دزفول انجام شد. جامعه آماری این پژوهش در سال 1401 را 4700 برنج‏کار شهرستان دزفول تشکیل می‏دهند که حجم نمونه برمبنای جدول کرجسی و مورگان، به‌روش نمونه‏گیری خوشه‏ای 360 نمونه برآورد شد. گردآوری داده‏ها به‌صورت پرسش‌نامه برمبنای مقیاس طیف لیکرت طراحی شد. روایی شکلی و محتوایی پرسش‌نامه با نظر متخصصان و پایایی آن از طریق آلفای کرونباخ و پایایی ترکیبی تأیید شد. نتایج پژوهش مدل‌سازی معادله‏های ساختاری نشان داد که متغیرهای خودکارآمدی (ƛ= 0.257, P= 0.000)، راهنمای عمل (ƛ= 0.222, P= 0.000)، شدت درک شده (ƛ= 0.121, P= 0.035) و حساسیت درک شده (ƛ= 0.100; P= 0.046) و منافع درک شده (ƛ= 0.319, P= 0.000) اثر مثبت و معنی‏داری در به‌کارگیری کودهای آلی در میان شالی‌کاران شهرستان دزفول دارد، این در حالی است که متغیر موانع درک شده دارای اثر معنی‏داری در این بخش نبود. علاوه‌براین، می‏توان گفت که متغیرهای چارچوب اعتقاد سلامت توانست 67 درصد از واریانس متغیر وابسته تحقیق (استفاده از کودهای آلی در کشت برنج) را تبیین نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structural Model of Factors Affecting the Use of Organic Fertilizers by Rice Farmers during Rice (Oryza sativa) Cultivation in Dezful County

نویسندگان [English]

  • Zahra Eskanadari
  • Moslem Saavri
  • Masoud Yazdanpanah
Department of Agricultural Extension and Education, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
چکیده [English]

Introduction
Agriculture is an essential part of every country’s economy and plays a decisive role in income, employment, and food security globally. Agricultural soils are critical for the efficient production of crops and safe food to meet the needs of a growing population. However, improving soil quality is a critical component of sustainable agriculture. Given the socio-economic and political pressure to improve soil fertility and increase agricultural productivity, widespread chemical fertilizer use, beginning in the 1950s and 1960s, led to increased food production at significant environmental cost. Chemical fertilizers and pesticides have improved short-term food production. However, soil degradation, greenhouse gas emission increases, and water pollution risks have emerged through their widespread use. Consequently, excessive use of chemical fertilizers negatively impacts human health throughout the food chain. For example, excessive use of phosphate fertilizers can lead to cadmium pollution, which if ingested can lead to osteoporosis. Excessive use of nitrogen fertilizer leads to the accumulation of nitrites in plants; nitrites combine with amines increasing the risk of cancers of the digestive system, and methemoglobinemia in severe cases. Fertilizer use leads to surface runoff and groundwater pollution contributing to eutrophication and consequently the deterioration of natural ecosystems and reduction of genetic diversity. Rice is one of the main Iranian foods, but the excessive use of chemical inputs in the production of this product has reduced its quality and properties, previous research shows that it is possible to use organic fertilizers in rice cultivation. It can provide nutrients needed by the soil to produce this product. But rice farmers do not have much desire to use it in rice cultivation. In line with this importance, the present study was conducted with the general aim of investigating the factors affecting the use of organic fertilizers by rice farmers during rice cultivation in Dezful county.
 
 
Materials and Methods
The statistical population of this research in 1401 is made up of 4700 rice farmers of Dezful County, and the sample size was estimated based on the table of Karjesi and Morgan, using the cluster sampling method of 360 samples. Data collection was designed in the form of a questionnaire based on the Likert spectrum scale. The form and content validity of the questionnaire was confirmed by experts' opinion and its reliability was confirmed through Cronbach's alpha and composite reliability
Results and Discussion
The results of the structural equation modeling research showed that the variables of self-efficacy (ƛ=0.257; P=0.000), action guide (ƛ=0.222; P=0.000), perceived intensity (ƛ=0.121; P=0.035) and perceived sensitivity (ƛ= 0.100; P= 0.046) and perceived benefits (ƛ= 0.319; P= 0.000) have a positive and significant effect on the use of organic fertilizers among rice farmers in Dezful County. This is despite the fact that the perceived obstacles variable did not have a significant effect in this section. In addition, it can be said that the variables of the health belief framework could explain 67% of the variance of the dependent variable of the research (the use of organic fertilizers in rice cultivation). In general, the results of this research can add new knowledge to the existing knowledge and provide new insights for policy makers in this field to promote and develop organic and safe products. 
Conclusion
This study was conducted with the general aim of determining the factors affecting farmers' willingness to use organic fertilizers in rice cultivation. In this study, the health belief model was used to identify the factors. The results showed that this theory is very efficient in this field because it was able to explain 67% of the variance in farmers' behavior in this field. In general, the results of this study can provide new insights for policymakers in this field in order to produce healthy products.

کلیدواژه‌ها [English]

  • Environmental protection
  • food safety
  • structural equation modeling
  • sustainable agriculture

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abbasian, A., & Aminpanah, H. (2018). Effects of previous crop and rate of phosphorous fertilizer application on yield and yield components of rice (Oryza sativa) cv. Shiroudi. Journal of Crop Ecophysiology11(44(4)), 889-904. (In Persian). https://doi.org/10.22059/IJSWR.2020.303674.668635
  2. Abdulla, S.M., Jamil, D.M., & Aziz, K.H.H. (2020). Investigation in heavy metal contents of drinking water and fish from Darbandikhan and Dokan Lakes in Sulaimaniyah province-Iraqi Kurdistan region. In IOP Conference Series: Earth and Environmental Science,612(1), 012023. https://doi.org/10.1088/1755-1315/612/1/012023
  3. Abraham, C., & Sheeran, P. (2015). The Health Belief Model. American Addiction Center. How long does alcohol stay in your system? 2021; available from: https://americanaddictioncenters.org/alcoholism-treatment/how-long-insystem.
  4. Adhikari, A., Kwon, E.H., Khan, M.A., Shaffique, S., Kang, S.M., & Lee, I.J. (2024). Enhanced use of chemical fertilizers and mitigation of heavy metal toxicity using biochar and the soil fungus Bipolaris maydis AF7 in rice: Genomic and metabolomic perspectives. Ecotoxicology and Environmental Safety271, 115938. https://doi.org/10.1016/j.ecoenv.2024.115938
  5. Adnan, N., Nordin, S.M., & Anwar, A. (2020). Transition pathways for Malaysian paddy farmers to sustainable agricultural practices: An integrated exhibiting tactics to adopt Green fertilizer. Land Use Policy, 90, 104255. https://doi.org/10.1016/j.landusepol.2019.104255
  6. Boazar, M., Abdeshahi, A., & Yazdanpanah, M. (2020). Changing rice cropping patterns among farmers as a preventive policy to protect water resources. Journal of Environmental Planning and Management63(14), 2484-2500. https://doi.org/10.1080/09640568.2020.1729705
  7. Bora, K. (2022). Spatial patterns of fertilizer use and imbalances: Evidence from rice cultivation in India. Environmental Challenges7, 100452. https://doi.org/10.1016/j.envc.2022.100452
  8. Carpenter, C.J. (2010). A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Communication25(8), 661-669. https://doi.org/10.1080/10410236.2010.521906
  9. Champion, V.L., & Skinner, C.S. (2008). The health belief model. Health Behavior and Health Education: Theory, Research, and Practice4, 45-65.
  10. Cheng, S., Zheng, Z., & Henneberry, S. (2019). Farm size and use of inputs: Explanations for the inverse productivity relationship. China Agricultural Economic Review11(2), 336-354. https://doi.org/10.1108/CAER-09-2018-0192
  11. Duan, W., Peng, L., Zhang, H., Han, L., & Li, Y. (2021). Microbial biofertilizers increase fruit aroma content of Fragaria× ananassa by improving photosynthetic efficiency. Alexandria Engineering Journal, 60(6), 5323-5330. https://doi.org/10.1016/j.aej.2021.04.014
  12. Ejeta, L.T., Ardalan, A., Paton, D., & Yaseri, M. (2016). Predictors of community preparedness for flood in Dire-Dawa town, Eastern Ethiopia: Applying adapted version of Health Belief Model. International Journal of Disaster Risk Reduction, 19, 341-354. https://doi.org/10.1016/j.ijdrr.2016.09.005
  13. Erfani, R., Pirdashti, H., Nouri, M., & Abbasi, R. (2019). Comparison of paddy yield and soil qualitative characteristics among different agricultural systems in three regions of Mazandaran. Applied Field Crops Research32(1), 101-122. (In Persian). https://doi.org/10.22092/aj.2018.122292.1309
  14. Güler, T. (2010). Ekoloji temelli bir çevre eğitiminin öğretmenlerin çevre eğitimine karşı görüşlerine etkileri. Eğitim ve Bilim, 34(151), 23-41.
  15. Habib, S.S., Batool, A.I., Rehman, M.F.U., & Naz, S. (2023). Evaluation and association of heavy metals in commonly used fish feed with metals concentration in some tissues of niloticus cultured in biofloc technology and earthen pond system. Biological Trace Element Research, 201(6), 3006-3016. https://doi.org/10.1007/s12011-022-03379-0
  16. Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy130, 141-174. https://doi.org/10.1016/bs.agron.2014.10.001
  17. Hamid, F., Yazdanpanah, M., Baradaran, M., Khalilimoghadam, B., & Azadi, H. (2021). Factors affecting farmers’ behavior in using nitrogen fertilizers: Society vs. farmers’ valuation in southwest Iran. Journal of Environmental Planning and Management, 64(10), 1886-1908. https://doi.org/10.1080/09640568.2020.1851175
  18. Hair Jr, J.F., Matthews, L.M., Matthews, R.L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: Updated guidelines on which method to use. International Journal of Multivariate Data Analysis1(2), 107-123. https://doi.org/10.1504/IJMDA.2017.087624
  19. Homauini, Z., Abolhasani, L., & Sabouhi, M. (2018). Environmental impact assessment of different varieties of rice (Oryza sativa) paddy in the Kordkoy. Journal of Agroecology10(2), 580-602. (In Persian). https://doi.org/10.22067/JAG.V10I2.63502
  20. Huang, Y., Luo, X., Tang, L., & Yu, W. (2020). The power of habit: Does production experience lead to pesticide overuse?. Environmental Science and Pollution Research, 27(20), 25287-25296. https://doi.org/10.1007/s11356-020-08961-4
  21. Jalali, M., & Karimi Mojahed, J. (2020). Assessment of the health risks of heavy metals in soils and vegetables from greenhouse production systems in Iran. International Journal of Phytoremediation22(8), 834-848. https://doi.org/10.1080/15226514.2020.1715917
  22. Jeong, J.Y., & Ham, S. (2018). Application of the Health Belief Model to customers' use of menu labels in restaurants. Appetite123, 208-215. https://doi.org/10.1016/j.appet.2017.12.012
  23. Kabiri, S., Degryse, F., Tran, D.N., da Silva, R.C., McLaughlin, M.J. & Losic, D. (2017). Graphene oxide: A new carrier for slow release of plant micronutrients. ACS applied Materials and Interfaces, 9(49), 43325-43335. https://doi.org/1021/acsami.7b07890.
  24. Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land, 7(4), 133. https://doi.org/10.3390/land7040133
  25. Khan, M. (2010). Using the health belief model to understand pesticide use decisions. The Pakistan Development Review, 12, 941-956. https://doi.org/10.30541/v49i4IIpp.941- 956.
  26. Koupaie, E.H., & Eskicioglu, C. (2015). Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. Journal of Hazardous Materials300, 855-865. https://doi.org/10.1016/j.jhazmat.2015.08.018
  27. Kumar, S. (2013). Environmental awareness among rural folks of hamirpur district, HP. The International Journal of Engineering and Science, 1-84.
  28. Liu, W., Shao, X.F., Wu, C.H., & Qiao, P. (2021). A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. Journal of Cleaner Production, 298, 126763. https://doi.org/10.1016/j.jclepro.2021.126763
  29. Maleksaeidi, H., & Keshavarz, M. (2019). What influences farmers' intentions to conserve on-farm biodiversity? An application of the theory of planned behavior in Fars province, Iran. Global Ecology and Conservation20, e00698. https://doi.org/10.1016/j.gecco.2019.e00698
  30. Mankeb, P., Limunggura, T., In-Go, A., & Chulilung, P. (2014). Adoption of Good Agricultural Practices by Durian Farmers in Koh Samui District, Surat Thani Province, Thailand.
  31. Mazengia, E.M., Kassie, A., Zewdie, A., Tesfa, H., Aschale, A., & Demissie, G.D. (2024). Risky driving behavior among public transport vehicle drivers in Ethiopia using the health belief model. Transportation Research Interdisciplinary Perspectives23, 101011. https://doi.org/10.1016/j.trip.2023.101011
  32. McArthur, J.W., & McCord, G.C. (2017). Fertilizing growth: Agricultural inputs and their effects in economic development. Journal of Development Economics127, 133-152. https://doi.org/10.1016/j.jdeveco.2017.02.007
  33. Nasiri, A.R., Shahangian, S.A., Kerachian, R., & Zobeidi, T. (2024). Exploring socio-psychological factors affecting farmers' intention to choose a low-water-demand cropping pattern for water resources conservation: Application of the health belief model. Agricultural Water Management295, 108768. https://doi.org/10.1016/j.agwat.2024.108768
  34. Othman, Z. (2012). Information and communication technology innovation as a tool for promoting sustainable agriculture: A case study of paddy farming in west Malaysia (Doctoral dissertation, University of Malaya).
  35. Orji, R., Vassileva, J., & Mandryk, R. (2012). Towards an effective health interventions design: an extension of the health belief model. Online Journal of Public Health Informatics4(3), e61050. https://doi.org/5210/ojphi.v4i3.4321
  36. Ren, C., Jin, S., Wu, Y., Zhang, B., Kanter, D., Wu, B., Gu, B. (2021). Fertilizer overuse in Chinese smallholders due to lack of fixed inputs. Journal of Environmental Management293, 112913. https://doi.org/10.1016/j.jenvman.2021.112913
  37. Rosenstock, I.M. (2005). Why people use health services. The Milbank Quarterly83(4). https://doi.org/1111/j.1468-0009.2005.00425.x
  38. Savari, M., & G harechaee, H. (2020). Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. Journal of Cleaner Production263, 121512. https://doi.org/10.1016/j.jclepro.2020.121512
  39. Savari, M., Damaneh, H.E., & Damaneh, H.E. (2024). Managing the effects of drought through the use of risk reduction strategy in the agricultural sector of Iran. Climate Risk Management, 100619. https://doi.org/10.1016/j.crm.2024.100619
  40. Savari, M., Damaneh, H.E., & Damaneh, H.E. (2024). Discover the determining factors of the use of mangrove forests conservation behaviors. Journal for Nature Conservation, 126768. https://doi.org/10.1016/j.jnc.2024.126768
  41. Savari, M., Sheheytavi, A., & Amghani, M.S. (2023). Factors underpinning Iranian farmers’ intention to conserve biodiversity at the farm level. Journal for Nature Conservation73, 126419. https://doi.org/10.1016/j.jnc.2023.126419
  42. Savari, M., Ebrahimi-Maymand, R., & Mohammadi-Kanigolzar, F. (2013). The Factors influencing the application of organic farming operations by farmers in Iran. Agris on-line Papers in Economics and Informatics5(4), 179-187.
  43. Savari, M., Khaleghi, B., & Sheheytavi, A. (2024). Iranian farmers' response to the drought crisis: How can the consequences of drought be reduced?. International Journal of Disaster Risk Reduction114, 104910. https://doi.org/10.1016/j.ijdrr.2024.104910
  44. Savari, M., Damaneh, H.E., & Damaneh, H.E. (2024). Conservation behaviors of local communities towards mangrove forests in Iran. Global Ecology and Conservation, e03311. https://doi.org/10.1016/j.gecco.2024.e03311
  45. Savari, M., & Khaleghi, B. (2023). The role of social capital in forest conservation: An approach to deal with deforestation. Science of The Total Environment896, 165216. https://doi.org/10.1016/j.scitotenv.2023.165216
  46. Shahangian, S.A., Tabesh, M., Yazdanpanah, M., Zobeidi, T., & Raoof, M.A. (2022). Promoting the adoption of residential water conservation behaviors as a preventive policy to sustainable urban water management. Journal of Environmental Management313, 115005 https://doi.org/10.1016/j.jenvman.2022.115005
  47. Sible, C.N., Seebauer, J.R., & Below, F.E. (2021). Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy11(7), 1297. https://doi.org/10.3390/agronomy11071297
  48. Şimşekoğlu, Ö., & Lajunen, T. (2008). Social psychology of seat belt use: A comparison of theory of planned behavior and health belief model. Transportation Research Part F: Traffic Psychology and Behaviour11(3), 181-191. https://doi.org/10.1016/j.trf.2007.10.001
  49. Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo MF, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bondeau A, Jain AK, Meersmans J, Pugh TA. (2016). Global change pressures on soils from land use and management. Global change biology, 22(3), 1008-1028. https://doi.org/10.1111/gcb.13068
  50. Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P., Clark, J., Adhya, T., Rumpel, C.,
  51. Straub, C.L., & Leahy, J.E. (2014). Application of a modified health belief model to the pro‐environmental behavior of private well water testing. JAWRA Journal of the American Water Resources Association, 50(6), 1515-1526. https://doi.org/10.1111/jawr.12217
  52. Strydom, W.F. (2018). Applying the theory of planned behavior to recycling behavior in South Africa. Recycling, 3(3), 43. https://doi.org/10.3390/recycling3030043
  53. Taflinger, S., & Sattler, S. (2024). A situational test of the Health Belief Model: How perceived susceptibility mediates the effects of the environment on behavioral intentions. Social Science and Medicine, 116715. https://doi.org/10.1016/j.socscimed.2024.116715
  54. Vassallo, M., Saba, A., Arvola, A., Dean, M., Messina, F., Winkelmann, M., & Shepherd, R. (2009). Willingness to use functional breads. Applying the Health Belief Model across four European countries. Appetite, 52(2), 452-460. https://doi.org/10.1016/j.appet.2008.12.008
  55. Wang, Y., & Zhao, G. (2019). Life cycle assessment of potential pollutant-induced human capital loss caused by different agricultural production systems in Beijing, China. Journal of Cleaner Production240, 118141. https://doi.org/10.1016/j.jclepro.2019.118141
  56. Wang, Y., Yang, J., Liang, J., Qiang, Y., Fang, S., Gao, M., Fan, X., Zhang, B., & Feng, Y. (2018). Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China. Science of the Total Environment, 633, 1126-1135. https://doi.org/10.1016/j.scitotenv.2018.03.273
  57. Wang, Y., Zhou, S., & Jiang, G. (2023). Can the application of environmentally friendly fertilisers reduce agricultural labour input? Empirical evidence from peanut farmers in China. Sustainability15(4), 2989. https://doi.org/3390/su15042989
  58. Yazdanpanah, M., Moghadam, M.T., Zobeidi, T., Turetta, A.P.D., Eufemia, L., & Sieber, S. (2022). What factors contribute to conversion to organic farming? Consideration of the Health Belief Model in relation to the uptake of organic farming by Iranian farmers. Journal of Environmental Planning and Management65(5), 907-929. https://doi.org/10.1080/09640568.2021.1917348
  59. Zhai, L., Zhang, L., Cui, Y., Zhai, L., Zheng, M., Yao, Y., Zhang, J., Hou, W., Wu, H., & Jia, X. (2024). Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation. Journal of Integrative Agriculture23(4), 1179-1194. https://doi.org/10.1016/j.jia.2023.05.003

 

CAPTCHA Image