ارزیابی عملکرد، اجزاء عملکرد و شاخص‌های سودمندی کشت مخلوط لوبیا (Phaseolus vulgaris) () و ذرت (Zea mays) تحت تلقیح با باکتری Rhizobium phaseoli

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

کشت مخلوط، به‌عنوان روشی مؤثر برای استفاده از منابع، سبب افزایش عملکرد و پایداری محصول در مقایسه با کشت خالص می‌شود. مطالعه حاضر به‌صورت کرت‌های خرد شده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار انجام شد. فاکتور اصلی در دو سطح (تلقیح و عدم تلقیح با باکتری) و فاکتور فرعی، نسبت کشت مخلوط ذرت (Zea mays)- لوبیا (Phaseolus vulgaris) (کشت خالص ذرت و لوبیا، نسبت‌های 25 درصد لوبیا + 75 درصد ذرت، 50 درصد لوبیا + 50 درصد ذرت و 25 درصد ذرت + 75 درصد لوبیا) بود. بیشترین نسبت برابری زمین (LER) و ضریب ازدحام نسبی (RCC) در نسبت 25 درصد ذرت + 75 درصد لوبیا در شرایط تلقیح با باکتری به‎دست آمد، که نشانگر این است که تلقیح با باکتری، سبب افزایش عملکرد هر دو گونه گیاهی در مقایسه با شرایط عدم تلقیح شد. در شرایط تلقیح با باکتری، شاخص نسبت رقابت (CR) در تمام نسبت‌های کشت مخلوط، برای لوبیا بالاتر از یک و برای ذرت کمتر از یک بود. کمتر بودن این شاخص برای ذرت نسبت به لوبیا نشان می‌دهد که در این شرایط، ذرت در کشت مخلوط، توانایی رقابت کمتری نسبت به لوبیا داشت. در شرایط تلقیح با باکتری، شاخص قابلیت تهاجم برای لوبیا مثبت بود. مجموع ارزش نسبی (RVT) برای دو گونه گیاهی، در کلیه نسبت‌های کشت مخلوط، بالاتر از یک بود که نشان‌دهنده سودمندی اقتصادی کشت مخلوط نسبت به کشت خالص دو گونه بود. در مجموع، این نتایج نشان داد که کشت مخلوط لوبیا و ذرت تحت تلقیح با باکتری ریزوبیوم، می‌تواند راهکاری مناسب برای دسترسی به عملکرد مطلوب باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Yield, Yield Component and Usefulness Indices of Bean (Phaseolus vulgaris) and Maize (Zea mays) Intercropping under Inoculation with Rhizobium phaseoli

نویسندگان [English]

  • Ebrahim Zolfagari Kotbehsara
  • Peyman Sharifi
  • Mohammad Hossein Ansari
Department of Agronomy and Plant Breeding, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده [English]

Introduction
Intercropping involves cultivating two or more crops together in the same field within a single cropping year. One common method to supply nitrogen to plants is through the use of chemical fertilizers containing nitrogen. However, excessive use of nitrogen fertilizers conflicts with the principles of sustainable agriculture. An alternative approach is to utilize microorganisms capable of nitrogen fixation, such as rhizobial bacteria and non-symbiotic bacteria (Azospirillum, Herbaspirillum, Azotobacter, etc.). The purpose of this study is to evaluate the usefulness of intercropping of Guilan bean (Phaseolus vulgaris) landrace and maize (Zea mays) under inoculation with Rhizobium phaseoli.
Materials and Methods
The present study was conducted in Talesh, Guilan province as split plots based on the randomized complete block design with three replications. Main factor was use of bacteria at two levels (inoculation and non-inoculation) and the split factor was the ratio of maize-bean intercropping in five levels (monoculture of maize and bean, 25% bean + 75% maize, 50% bean + 50% maize and 75% bean + 25% maize). Maize and bean seeds were planted simultaneously on May 22, 2022. Beans were harvested in late of August and maize was harvested in mid-September. Each gram of inoculant contained 107 bacterial cells. To inoculate with bacteria, the seeds were first coated with arabic gum and then 10 grams of inoculant was added per one kilogram of seeds. Planting was done after half an hour and drying the inoculated seeds in the shade. After measuring seed yield at harvest, various indices were used to evaluate the effectiveness of intercropping, including the Land Equivalence Ratio (LER), Relative Crowding Coefficient (RCC), Competition Ratio (CR), Aggressivity, and Relative Value Total (RVT). The analysis involved variance assessment, mean comparisons, and calculations of intercropping usefulness indices, all performed using R software.
Results and Discussion
In bean, the effect of inoculation were significant on plant height, number of pods per plant, number of seeds per pod, pod length, hundred seed weight, biological yield, seed yield, harvest index and the effect of intercropping were significant on plant height, number of pods per plant, number of seeds per pod, biological yield, seed yield and harvest index and the interaction effects of two factor were significant on plant height, biological yield and seed yield. In maize, the effect of inoculation were significant on plant height, ear length and grain yield. The effect of intercropping were significant on plant height, ear length, number of grains in ear, grain yield, biological yield and harvest index and interaction effects of two factor were significant on ear length and hundred grain weightUnder both inoculated and non-inoculated conditions, the Land Equivalence Ratio (LER) exceeded 1 across all intercropping ratios, demonstrating the superiority of intercropping over monoculture in these systems. The highest LER and Relative Crowding Coefficient (RCC) were observed in the planting ratio of 75% bean + 25% maize under inoculated conditions, indicating that inoculation enhanced the yield of both species compared to non-inoculated conditions. In the inoculated condition, the Competition Ratio (CR) was greater than 1 for beans and less than 1 for maize across all intercropping ratios. However, under non-inoculated conditions, for the ratios of 75% bean + 25% maize and 25% bean + 75% maize, the CR was greater than 1 for maize and less than 1 for beans. This shift indicates that maize had a lower competitive ability compared to beans in inoculated conditions within the mixed cropping system.  The Aggressivity index for beans was positive under inoculated conditions across all three intercropping ratios, further supporting its competitive advantage. The Relative Value Total (RVT), which combines the RVT values of beans and maize, was greater than 1 in all intercropping ratios, highlighting the economic benefits of mixed cropping compared to monocropping of either species.
Conclusion
In general, for the sustainable production of crops, the intercropping of bean and maize under inoculation with rhizobium bacteria can be one of the suitable solutions to reach the optimal yield performance.

کلیدواژه‌ها [English]

  • Biological nitrogen fixation
  • Growth promoting bacteria
  • Land Equivalence Ratio
  • Rhizobial symbiosis
  • Sustainable agriculture

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aguilar-Jiménez, C.E., Galdámez-Gadámez, J., Martínez-Aguilar, F.B., Guevara-Hernández, F., & Vázquez-Solis, H. (2019). Eficiencia del policultivo maízfrijol-calabaza bajo manejo orgánico en la Frailesca, Chiapas, México. RevistaCientífica Agroecosistemas, 7, 64–72.
  2. Aguirre-Noyola, J.L., Rosenblueth, M., Santiago-Martínez, M.G., & Martínez-Romero, E. (2021). Transcriptomic responses of rhizobium phaseoli to root exudates reflect its capacity to colonize maize and common bean in an intercropping system. Frontiers in Microbiology, 12, 740818. https://doi.org/10.3389/fmicb.2021.740818
  3. Aguirre-von-Wobeser, E., Rocha-Estrada, J., Shapiro, L.R., & de la Torre, M. (2018). Enrichment of verrucomicrobia, actinobacteria and burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS One, 13, e0208852. https://doi.org/10.1371/journal. pone.0208852
  4. Alexander, M.W., & Genter, C.F. (1962). Production of corn and soybean in alternate pairs of rows. Agronomy Journal, 54, 233-234.
  5. Ardalani, S., Saeidi, M., Jalali-Honarmand, S., Ghobadi, M., & Abdoli, M. (2014). Evaluation of grain yield and its relationship with remobilization of dry matter in bread wheat cultivars under water deficit stress at the post anthesis. Iranian Journal of Dryland Agronomy, 3(2), 173-195. (In Persian with English abstract). https://doi.org/10.22092/idaj.2015.101297
  6. Banik, P., Midya, A. Sarkar, B.K., & Ghose, S.S. (2006). Wheat and chickpea intercropping systems in additive series experiment: Advantages and smothering. European Journal Agronomy, 24, 324-332. https://doi.org/1016/j.eja.2005.10.010
  7. Bhattacharjee, R.B., Singh, A., & Mukhopadhyay, S.N. (2008). Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: Prospects and challenges. Applied and Environmental Microbiology, 80(2), 199-209. https://doi.org/10.1007/s00253-008-1567-2
  8. Charani, E., Sharifi, P., & Aminpanah, H. (2017). Evaluation of grain yield and yield components in intercropping of maize and bean. Biharean Biologist, 11(1), 37-42.
  9. Charani, E., Sharifi, P., & Aminpanah, H. (2018). The competitive ability of maize (Zea mays )- common bean (Phaseolus vulgaris L.) intercrops against weeds. Revista de la Facultad de Agronomia, 35, 40-62.
  10. Chen, N., Li, X., Shi, H., Hu, Q., Zhang, Y., Hou, C., & Liu, Y. (2022). Modeling evapotranspiration and evaporation in corn/tomato intercropping ecosystem using a modified ERIN model considering plastic film mulching. Agricultural Water Management, 260, 107286. https://doi.org/10.1016/j.agwat.2021.107286
  11. Dabbagh Mohammadi-Nassab, A., Amini, R., & Tamari, E. (2015). Evaluation of maize and three cultivars of common bean intercropping with application of biofertilizers and chemical fertilizers. Journal of Sustainable Agriculture and Production Science, 25, 99-113. (In Persian with English abstract).
  12. Dahmardeh, M., & Keshtegar, A. (2014). Evaluation of yield and yield components of maize (Zea mays) in intercropping with peanuts (Arachis hypogaea L.). Journal of Agroecology, 6(2), 311-323. (In Persian with English abstract). https://doi.org/10.22067/jag.v6i2.39371
  13. Dhima, K., Lithourgidis, A., Vasilakoglou, I., & Dordas, C. (2007). Competition indices of common vetch and cereal intercrops in two seeding ratios. Field Crops Research, 100(2-3), 249-256. https://doi.org/10.1016/j.fcr.2006.07.008
  14. Farahvash, F., Rahmati, A., Jafari, F., & Amir Hallaji, H. (2012). Effect of number of planting rows in strip intercropping of maize, pintobean and soybean and their sole cropping on seed yield. Journal of Crop Ecophysiology, 5(20), 27-42. (In Persian with English abstract).
  15. Fatemi Devin, R., Hosseini, S.B., Moghadam, H., & Motesharezadeh, B. (2020). Effect of organic and bio-fertilizers and additive and replacement intercropping systems on corn (Zea maize) and bean (Phaseolus vulgaris L.) yields. Iranian Journal of Field Crop Science51(4), 133-145. (In Persian with English abstract). https://doi.org/10.22059/ijfcs.2020.286433.654634
  16. Fotohi-Chianeh, S., Javanshir, A., Dabbagh Mohammadi Nassab, A., Zande, E., Razavi, F., & Rezaei-Chianeh, E. (2012). Effect of various corn (Zea mays) and bean (Phaseolus vulgaris L.) intercropping densities on crop yield and weed biomass. Journal of Agroecology, 4(2), 131-143. (In Persian with English abstract). https://doi.org/10.22067/jag.v4i2.14966
  17. Gastélum, G., & Rocha, J. (2020). Milpas as a model for studying microbiodiversity and plant-microbe interactions. TIP Revista Especializada en Ciencias Químico-Biológicas, 23, 1–13. https://doi.org/10.22201/fesz.23958723e.2020.0.254
  18. Gebyehu, S., & Simane, B. (2006). Genotype × cropping systems interaction in climbing bean (Phaseolus vulgaris) grown as sole crop and in association with maize (Zea mays L.). European Journal of Agronomy, 24, 396-403. https://doi.org/10.1016/j.eja.2006.01.005
  19. Gómez-Godínez, L.J., Fernandez-Valverde, S.L., Martínez Romero, J.C., & Martínez-Romero, E. (2019). Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs. Systematic and Applied Microbiology, 42, 517–525. https://doi.org/10.1016/j.syapm.2019.05.003
  20. Hamzei, J., & Ghamari Rahim, N. (2014). Evaluation of corn-soybean intercropping advantages using agronomic and weed control efficiency indices. Journal of Agricultural Science and Sustainable Production, 24(3), 61-74. (In Persian with English abstract)
  21. Hassan, M., & Bin Sahid, I. (2016). Evaluation of rhizobium inoculation in combination with phosphorus and nitrogen fertilization on groundnut growth and yield. Journal of Agronomy, 15(3), 142-146. https://doi.org/3923/ja.2016.142.146
  22. Jose´-Miguel, B., Mar ´a, J.P., Rosario, A., & Concepcio´n, A. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761-78. https://doi.org/10.1093/jxb/eri197
  23. Khan, M., Khan, R.U., Wahab, A., & Rashid, A. (2005). Yield and yield components of wheat as influenced by intercropping of chickpea, lentil and rapeseed in different proportions. Pakistan Journal of Agricultural Sciences, 42, 1-3.
  24. Koocheki, A., Nassiri Mahallati, M., Feizi, H., Amirmoradi, S., & Mondani, F. (2010). Effect of strip intercropping of maize (Zea mays) and bean (Phaseolus vulgaris L.) on yield and land equivalent ratio in weedy and weed free conditions. Journal of Agroecology, 2(2), 225-235. (In Persian with English abstract). https://doi.org/10.22067/jag.v2i2.7627
  25. Latati, M., Pansu, M., Drevon, J.J., & Ounane, S.M. (2013). Advantage of intercropping maize (Zea mays) and common bean (Phaseolus vulgaris L.) on yield and nitrogen uptake in Northeast Algeria. International Journal of Research in Applied Sciences, 1, 1–7.
  26. Li, B., Li, Y.Y., Wu, H.M., Zhang, F.F., Li, C.J., & Li, X.X. (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 Proceedings of the National Academy of Sciences, 113, 6496–6501. https://doi.org/10.1073/pnas. 1523580113
  27. McGilchrist, C.A. (1965). Analysis of competition experiments. Biometrics, 21, 975–985. https://doi.org/10.2307/2528258
  28. Mommer, L., Kirkegaard, J., & van Ruijven, J. (2016). Root–root interactions: Towards a rhizosphere framework. Trends Plant Science, 21, 209–217. https://doi.org/10.1016/j.tplants.2016.01.009
  29. Moradi, P., Asghari, J., Mohsen Abadi, G., & Samiezadeh, H. (2016). Evaluation of the beneficial effects of triple intercropping of maize (Zea mays), pinto been (Phaseolus vulgaris L.). Journal of Crop Production and Processing, 6(19), 177-189. (In Persian with English abstract). URL: http://jcpp.iut.ac.ir/article-1-2521-fa.html"
  30. Nachigera, G.M., Ledent, J.F., & Draye, X. (2008). Shoot and root competition in potato/maize intercropping: Effects on growth and yield. Environmental and Experimenttal Botany, 64(2), 180-188. https://doi.org/10.1016/j.envexpbot.2008.05.008
  31. Nasrollahzadeh Asl, A., & Talebi, M. (2016). Evaluation of sunflower (Heliantus annus L.) and corn (Zea mays L.) intercropping based on replacement method in Khoy region. Journal of Crop Ecophysiology, 8(27), 204-215. (In Persian with English abstract).
  32. Nyoki, D., & Ndakidemi, P.A. (2018). Root length, nodulation and biological nitrogen fixation of rhizobium inoculated soybean (Glycine max [L.] Merr.) grown under maize (Zea mays) intercropping systems and P and K fertilization. Advances in Bioresearch, 9, 173–180. https://doi.org/10.1080/00103624.2018.1455846
  33. Piroozi, B., Hosseini, S.M.B., Mazaheri, D., & Heidari, H. (2014). Evaluation of sowing time and intercropping on vegetative and reproductive traits of bean (Phaseolus vulgaris) and biological yield of forage maize (Zea mays) Agronomy Journal (Pajouhesh and Sazandegi), 104, 62-68. (In Persian with English abstract). https://doi.org/22092/AJ.2014.101646
  34. Raei, Y., Ahmadabad, M.S., Ghassemi-Golezani, K., & Ghassemi, S. (2020). Pinto bean and black mustard responses to bio-fertilizers under intercropping system. Advances in Horticultural Science, 34(2), 175-182. https://doi.org/10.13128/ahsc-7407.
  35. Rebollar, E.A., Sandoval-Castellanos, E., Roessler, K., Gaut, B.S., Alcaraz, L.D., & Benítez, M. (2017). Seasonal changes in a maize-based polyculture of central Mexico reshape the co-occurrence networks of soil bacterial communities. Frontiers in Microbiology, 8, 2478. https://doi.org/10.3389/fmicb.2017.02478
  36. Rezaei-Chianeh, E., Dabbagh Mohammadi Nassab, A., Shakiba, M.R., Ghassemi-Golezani, K., & Aharizad, S. (2011). Intercropping of maize (Zea mays ) and faba bean (Vicia faba L.) at different plant population densities. African Journal of Agricultural Research, 7, 1786-1793.
  37. Rosenblueth, M., & Martínez-Romero, E. (2004). Rhizobium etli maize populations and their competitiveness for root colonization. Archives of Microbiology, 181, 337–344. https://doi.org/10.1007/s00203-004-0661-9
  38. Rostami, L., Koocheki, A., & Nassiri Mahallati, M. (2011). The effect of different crop plant densities on radiation absorption and use efficiency by corn (Zea mays) and bean (Phaseolus vulgaris L.) intercropped canopy. Journal Of Agroecology, 3(3), 290-297. (In Persian with English abstract). https://doi.org/10.22067/jag.v3i3.13554
  39. Sarlak, Sh., & Aghaalikhani, M. (2009). Effect of pant dnsity and mxing rtio on cop yeld in sweet corn (Zea mays var Saccharata) and mngbean (Vigna radiata L.) intercropping. Iranian Journal of Crop Sciences, 11(4), 367-380. (In Persian with English abstract). URL: http://agrobreedjournal.ir/article-1-197-en.html
  40. Sharma, K., & Garg, V.K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708–715. https://doi.org/10.1016/j.biortech.2017.11.101
  41. Singh, R.K., Malik, N., & Singh, S. (2013). Impact of rhizobial inoculation and nitrogen utilization in plant growth promotion of maize (Zea mays). Nusantara Bioscience, 5, 8-14. https://doi.org/10.13057/nusbiosci/n050102
  42. Tsubo, M., Walker, S., & Mukhala, E. (2001). Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Research, 71, 17-29. https://doi.org/1016/S0378-4290(01)00142-3
  43. Vandermeer, J. (1990). Intercropping. In Agroecology, Mc Graw – Hill publishing Co.
  44. Vora, S.M., Joshi, P., Belwalkar, M., & Archana, G. (2021). Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea–maize intercropping system. Rhizosphere, 18, 100331. https://doi.org/1016/j.rhisph.2021.100331
  45. Willey, R.W., & Rao, M.R. (1980). A competitive ratio for quantifying competition between intercrops. Experimental Agriculture, 16(2), 117–125.
  46. Zhao, C., Fan, Z., Coulter, J.A., Yin, W., Hu, F., & Yu, A. (2020). High maize density alleviates the inhibitory effect of soil nitrogen on intercropped pea. Agronomy, 10, 248. https://doi.org/10.3390/agronomy10020248

 

 

CAPTCHA Image