ارزیابی تاب‌آوری اکولوژیکی بوم‌نظام‌های کشاورزی استان خراسان رضوی: مقایسه بوم‌نظام‌های تلفیقی و غیر تلفیقی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

کشاورزی بخش بسیار مهمی از اهداف توسعه پایدار سازمان ملل را در بردارد. کشاورزی در صورتی می‌تواند نقش مثبتی در دستیابی اهداف توسعه پایدار داشته باشد که از تاب‌آوری اکولوژیکی و بهبود ظرفیت‌های مرتبط با آن در جهت مقابله با طیف گسترده‌ای از چالش‌های محیطی، اقتصادی و اجتماعی برخوردار باشد. در این پژوهش، تاب‌آوری اکولوژیکی بوم‌نظام‌های کشاورزی استان خراسان رضوی بر‌اساس اطلاعات جمع‌آوری‌شده از ۸۷ خانوار و در ۱۰ شهرستان این استان مورد ارزیابی کمّی قرار گرفت. برای این منظور، اطلاعات مورد نیاز با تکمیل پرس‌شنامه جامع و مصاحبه حضوری با خانوارها جمع‌آوری شد و داده‌ها با استفاده از روش RIMA II-FAO تجزیه‌ و تحلیل شدند. در این رابطه، ابتدا خانوارهای روستایی بر‌اساس سطح زیرکشت محصولات زراعی و همچنین تولید زعفران (Crocus sativus) و تعداد واحدهای دامی در مالکیت آن‌ها خوشه‌بندی شد و بوم‌نظام‌ها در چهار گروه دسته‌بندی شدند. گروه اول: تنها به زراعت مشغول بودند (G1)، گروه دوم: نظام تلفیقی زراعت و دامداری در سطح متوسط داشتند (G2)، گروه سوم: تنها به دامداری در سطح بزرگ مشغول بودند (G3) و گروه چهارم: دارای هر دو نظام تلفیقی زراعت و دامداری در سطح بزرگ (G4) بودند. تاب‌آوری خانوارها در هر یک از این چهار گروه بر‌اساس پنج مؤلفه (میزان دارایی، ظرفیت سازگاری، وضعیت تنوع زیستی، شدت فشرده‌سازی و استفاده از خدمات بوم‌نظامی) که هر یک با تعدادی نمایه سنجیده ‌شد، مورد ارزیابی قرار گرفت. امتیازهای این پنج مؤلفه بعد از وزن دهی و نرمال‌سازی تجمیع شد و شاخصی در مقیاس صفر تا پنج برای تاب‌آوری محاسبه گردید. نتایج نشان داد که بین تاب‌آوری سیستم‌های زراعی و پنج مؤلفه مذکور، رابطه مستقیم و معنی‌داری وجود داشت و از بین آن‌ها، تنوع زیستی بیشترین تأثیر را بر تاب‌آوری خانوارهای کشاورز داشت. همچنین مؤلفه‌های میزان دارایی، ظرفیت سازگاری و استفاده از خدمات بوم‌نظامی نیز به‌طور مستقیم بر افزایش تاب‌آوری خانوارهای روستایی تأثیرگذار بودند، درحالی‌که فشرده‌سازی دارای تأثیر منفی بر شاخص تاب‌آوری خانوارهای روستایی بود. بر این اساس، خانوارهای گروه (G2) و (G4) یعنی بوم‌نظام‌هایی که با تلفیق دامداری و زراعت مدیریت می‌شدند، به‌ترتیب بیشترین میزان تاب‌آوری را نسبت به دو گروه دیگر، یعنی خانوارهایی که تنها به زراعت مشغول بودند (G1) و خانوارهایی که تنها به دامداری مشغول بودند (G3) به خود اختصاص دادند و کمترین میزان تاب‌آوری مربوط به خانوارهایی بود که تنها به دامداری در سطح بزرگ مشغول بودند (G3) بود. در مقایسه نظام‌های تلفیقی مشخص شد که به‌طور کلی، بالا بودن امتیاز مؤلفه‌های تنوع زیستی، خدمات بوم‌نظام، ظرفیت سازگاری، میزان پایین فشرده‌سازی، همچنین سطوح کوچک‌تر مزارع مربوط به خانوارهایی که نظام تلفیقی زراعت و دامداری در سطح متوسط داشتند (G2) از مهم‌ترین عوامل تعیین‌کننده سطح بالای تاب‌آوری در این گروه نسبت به ‌نظام‌های تلفیقی زراعت و دامداری هر دو در سطح بزرگ (G4) بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Ecological Resilience of Agricultural Ecosystems in Razavi Khorasan Province: Comparison of Integrated and Non-Integrated Ecosystems

نویسندگان [English]

  • Pegah Naghipour
  • Alireza Koocheki
  • Mahdi Nasiri mahalati
  • Soroor Khorramdel
Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction[1]
Agriculture plays a very important role in the realization of many of the United Nations Sustainable Development Goals (SDGs). If agriculture is to make a positive contribution to achieving these goals, ensuring the ecological resilience of farmers i.e. improving adaptation capacity of the households as well as the whole production system to a wide range of environmental changes and shocks is crucial. The intensification of climate change caused by global warming and its consequences, including the occurrence of long droughts, floods and other natural disasters, have threatened the food security of subsistence farmers and smallholders in the first place, and the food security of large communities in the long run. Also recently, the covid-19 pandemic and the possibility of similar epidemics have created more concerns. Therefore, the issue of resilience has been highly considered by researchers and international organizations, especially the Food and Agriculture Organization of the United Nations (FAO), so that resilience has been defined as one of the 10 elements of agroecology. On the other hand, numerous research evidences have shown that integrated systems (combination of crop cultivation and animal husbandry) in order to increase structural and functional diversity, increase ecological resilience against severe environmental stresses and climate changes. In addition, integrated systems have different resilience and ecological stability depending on the intensity, amount and type of integration. Therefore, in the recent years large number of researches are conducted to address the resilience of agricultural systems. Since the ecological dimensions of resilience have not been comprehensively investigated in Iran, the purpose of this research is to evaluate the ecological resilience of rural households in Razavi Khorasan province and compare systems based on agriculture, based on livestock and integrated systems of agriculture and livestock. In this research, the recommended method of FAO has been used to evaluate resilience.
Materials and Methods
The required informations were collected from 87 households from 10 cities within the province by completing a comprehensive questionnaire and face-to-face interviews with households. Data were analyzed using RIMA II-FAO method. Clustering of 87 households based on their corresponding cultivated area of crops, saffron and the number of livestock units was resulted in 4 livelihood groups, including only cropping (G1), the integrated crop-livestock at medium level (G2), only livestock at large level (G3) and integrated crop-livestock both at large level (G4). The resilience of households in each group was evaluated based on 5 components (asset, adaptive capacity, biodiversity, intensification, and use of ecosystem services), each measured by a number of indicators. The scores of 5 components were aggregated after weighting, by using factor analysis, and normalization to develop a composite resilience index in 1-5 scale.
Results and Discussion
The results showed a significant relationship between the resilience of rural households and the 5 mentioned components where intensification had negative correlation with resilience while the impact of assets, adaptation capacity, biodiversity and use of ecosystem services on household resilience was positive with the highest correlation for biodiversity. The households of integrated crop-livestock groups (G2) and (G4) had the highest resilience compared to households in single enterprise groups i.e. only cropping (G1) and only livestock (G3), with the lowest resilience in G3. In general, the high score of the components of biodiversity, ecosystem services, adaptive capacity, as well as the low level of intensification in small to medium scale integrated crop-livestock systems resulted to more resilient households while large scale single enterprise households had lower resilience despite their higher assets.
Conclusion
Resilience is fundamental bases of sustainability and it refers to the ability of systems to return to its initial state after facing environmental tensions. The main purpose of the present study was to evaluate ecological resilience for agriculture ecosystems of Khorason Razavi province. The main findings indicated that the integrated farmlands with other activities particularly with animal husbandry is much more resilient than pure and monotype farm production systems.
Acknowledgements
We are grateful to the Honorable Vice Chancellor of Research and Technology of Ferdowsi University of Mashhad for providing the costs of this research.



 
 



 
 

کلیدواژه‌ها [English]

  • Adaptive capacity
  • Biodiversity
  • Composite resilience index
  • Integrated system
  • Intensification
  • Sustainable agriculture

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

 

  1. Abdollahzadeh, G., Sharifzadeh, M.S., Sklenička, P., & Azadi, H. (2023). Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach. Agricultural Systems204, 103537. https://doi.org/10.1016/j.agsy.2022.103537
  2. Aboubakr, G., Diaw, A., & Wünscher, T. (2016). Factors affecting rural households’ resilience to food insecurity in Niger. Sustainability, Multidisciplinary Digital Publishing Institute (MDPI), 8(3), 1-10. https://doi.org/10.3390/su8030181
  3. Alinovi, L., D’errico, M., Mane, E., & Romano, D. (2010). Livelihoods strategies and household resilience to food insecurity: An empirical analysis to Kenya. European Report on Development1(1), 1-52.
  4. Alinovi, L., Mane, E., & Romano, D. (2008). Towards the measurement of household resilience to food insecurity: Applying a model to Palestinian household data. In Deriving Food Security Information from National Household Budget Surveys. Experiences, Achievement, Challenges (pp. 137-152). Food and Agricultural Organization of the United Nations.
  5. Allen, C.R., Angeler, D.G., Garmestani, A.S., Gunderson, L.H., & Holling, C.S. (2014). Panarchy: Theory and application. Ecosystems17, 578-589. https://doi.org/10.1007/s10021-013-9744-2
  6. Barrios, E., Gemmill-Herren, B., Bicksler, A., Siliprandi, E., Brathwaite, R., Moller, S., Batello C., & Tittonell, P. (2020). The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosystems and People, 16(1), 230-247, https://doi.org/10.1080/26395916.2020.1808705
  7. Béné, C., Bakker, D., Chavarro, M. J., Even, B., Melo, J., & Sonneveld, A. (2021). Global assessment of the impacts of COVID-19 on food security. Global Food Security31, 100575. https://doi.org/10.1016/j.gfs.2021.100575
  8. Berry, R., Vigani, M., & Urquhart, J. (2022). Economic resilience of agriculture in England and Wales: A spatial analysis. Journal of Maps, 18(1), 70-78. https://doi.org/10.1080/17445647.2022.2072242
  9. Bizikova, L., Waldick, R., & Larkin, P. (2017). Can we measure resilience? Reducing agriculture’s vulnerability to climate change. International Institute for Sustainable Development, 8 pp.
  10. Bousquet, F., Botta, A., Alinovi, L., Barreteau, O., Bossio, D., Brown, K., & Staver, C. (2016). Resilience and development: Mobilizing for transformation. Ecology and Society, 21(3), 40. https://doi.org/5751/ES-08754-210340
  11. Ciani, F., & Romano, D. (2014). Testing for Household Resilience to Food Insecurity: Evidence from Nicaragua. Third Congress from Italian Association of Agricultural and Applied Economics (AIEAA), June 25-27, Alghero, Italy. https://doi.org/22004/ag.econ.172958
  12. Cochran, W.G. (1977) Sampling Techniques. 3rd Edition, John Wiley & Sons, New York, 330 p.
  13. Ehsani, M., & Shokoohi (2022). Estimation of Iran's agricultural resilience index to climate change. Strategic Research Journal of Agricultural Sciences and Natural Resources, 7(1), 63-78.
  14. Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., King, D., Lindsay, K.F., Mitchell, S., & Tischendorf, L. (2015). Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture Ecosystem and Environment 200, 219–234. https://doi.org/10.1016/j.agee.2014.11.018
  15. FAO, (2016a). RIMA 2: Resilience index measurement and analysis 2. Rome: Italy: United Nations Food and Agriculture Organization. URL: http://www.fao.org/3/ai5665e. Pdf
  16. FAO, (2016b). Analyzing resilience for better targeting and action. Resilience Index Measurement and Analysis-II. Food and Agriculture Organization of the United Nations, p. 80.
  17. Franzluebbers, A.J., & Hendrickson, J.R. (2023). Should we consider integrated crop‐livestock systems for ecosystem services, carbon sequestration, and agricultural resilience to climate change? Agronomy Journal, In Press.
  18. Gambo Boukary, A., Diaw, A., & Wünscher, T. (2016). Factors affecting rural households’ resilience to food insecurity in Niger. Sustainability8(3), 181. https://doi.org/3390/su8030181
  19. Gan, X., Fernandez, I.C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators81, 491-502. https://doi.org/10.1016/j.ecolind.2017.05.068
  20. Gil, J.D., Cohn, A.S., Duncan, J., Newton, P., & Vermeulen, S. (2017). The resilience of integrated agricultural systems to climate change. Wiley Interdisciplinary Reviews: Climate Change8(4), e461.
  21. Holling, C.S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics4(1), 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
  22. Kahiluoto, H., Kaseva, J., Balek, J., Olesen, J.E., Ruiz-Ramos, M., Gobin, A., & Trnka, M. (2019). Decline in climate resilience of European wheat. Proceedings of the National Academy of Sciences116(1), 123-128. https://doi.org/10.1073/pnas.1804387115
  23. Koocheki, A., Mahallati, M.N., Bannayan, M., & Yaghoubi, F. (2022). Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change. Mitigation and Adaptation Strategies for Global Change27(4), 27. https://doi.org/10.1007/s11027-022-09996-3
  24. Leis, N., & Rostami, F., & Alibeygi, A.H. (2022). Strategies to improve farmers' resilience to drought from the perspective of experts: A study in Miandoab county. Geography and Development, 19(65), 77-98. http://doi.org/10.22111/J10.22111.2021.6540
  25. López Rodríguez, S., van Bussel, L.G.J., & Alkemade, R. (2024). Classification of agricultural land management systems for global modeling of biodiversity and ecosystem services. Agriculture, Ecosystems and Environment, 360, 108795. https://doi.org/10.1016/j.agee.2023.108795
  26. Macholdt, J., Piepho, H.P., & Honermeier, B. (2019). Does fertilization impact production risk and yield stability across an entire crop rotation? Insights from a long-term experiment. Field Crops Research238, 82-92. https://doi.org/10.1016/j.fcr.2019.04.014
  27. Mansourikhah, H., Chamani, M., Karimi, N., Asgari, Q., & Karimi, K. (2022). Determining the metabolizable energy and the daily requirement of forage dry matter under maintenance conditions for grazing sheep in the Siya Plus pasture (study: Lar National Park). Animal Science Knowledge and Research, 6(1), 43-56. https://doi.org/22092/ASJ.2020.128835.2021
  28. Marchese, D., Reynolds, E., Bates, M.E., Morgan, H., Clark, S.S., & Linkov, I. (2018). Resilience and sustainability: Similarities and differences in environmental management applications. Science of the Total Environment613, 1275-1283. https://doi.org/10.1016/j.scitotenv.2017.09.086Get rights and content
  29. Moreira, L.L., de Brito, M.M., & Kobiyama, M. (2021). Effects of different normalization, aggregation, and classification methods on the construction of flood vulnerability indexes. Water13(1), 98. https://doi.org/10.3390/w13010098
  30. Nakhli, S.R., & Bastani, M. (2023) An Investigating and calculating the resilience of agricultural production with an emphasis on Iran's food security. Journal of Defense Economics and Sustainable Development, 29, 73-101. https://doi.org/30495/JAE.2021.20982.2000
  31. Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96-112. https://doi.org/10.1016/j.eja.2010.11.003Get rights and content
  32. Oliver, T.H., Heard, M.S., Isaac, N.J., Roy, D.B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C.L., Petchey, O.L., Proença, V., Raffaelli, D., Suttle, K.B., Mace, G.M., Martín-López, B., Woodcock, B.A., & Bullock, J.M. (2015). Biodiversity and resilience of ecosystem functions. Trends in Ecology and Evolution30(11), 673-684. https://doi.org/10.1016/j.tree.2015.08.009
  33. Pannell, D.J., & Glenn, N.A. (2014). A framework for the economic evaluation and selection of sustainability indicators in agriculture. Ecological Economics33(1), 135-149. https://doi.org/10.3390/su10124823
  34. Paramesh, V., Ravisankar, N., Behera, U., Arunachalam, V., Kumar, P., Solomon Rajkumar, R., Dhar Misra, S., Mohan Kumar, R., Prusty, A. K., Jacob, D., & Panwar, A.S. (2022). Integrated farm-ing system approaches to achieve food and nutritional securityfor enhancing profitability, employment, and climate resiliencein India. Food and Energy Security, 11, e321. https:// doi. org/ 10. 1002/ fes3. 321
  35. Peltonen-Sainio, P., Jauhiainen, L., & Laurila, I.P. (2009). Cereal yield trends in northern European conditions: Changes in yield potential and its realisation. Field Crops Research110(1), 85-90. https://doi.org/1016/j.fcr.2008.07.007
  36. Peterson, C.A., Bell, L.W., Carvalho, P.C.D.F., & Gaudin, A.C. (2020). Resilience of an integrated crop–livestock system to climate change: A simulation analysis of cover crop grazing in southern Brazil. Frontiers in Sustainable Food Systems4, 604099. https://doi.org/10.3389/fsufs.2020.604099
  37. Renard, D., & Tilman, D. (2019). National food production stabilized by crop diversity. Nature571(7764), 257-260. https://doi.org/1038/s41586-019-1316-y
  38. Salek, M., Hula, V., Kipson, M., Dankova, R., Niedobova, J., & Gamero, A. (2018). Bringing diversity back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecologica Indicators, 90, 65–73. https://doi.org/1016/J.ECOLIND.2018.03.001
  39. Sibrian, R., d’Errico, M., Palma de Fulladolsa, P., & Benedetti-Michelangeli, F. (2021). Household resilience to food and nutrition insecurity in Central America and the Caribbean. Sustainability13(16), 9086.https://doi.org/10.3390/su13169086
  40. Szabo, S., Hossain, M.S., Adger, W.N., Matthews, Z., Ahmed, S., Lázár, A.N., & Ahmad, S. (2016). Soil salinity, household wealth and food insecurity in tropical deltas: Evidence from south-west coast of Bangladesh. Sustainability Science11, 411-421. https://doi.org/1007/s11625-015-0337-1
  41. Szymczak, L.S., de Faccio Carvalho, P.C., Lurette, A., De Moraes, A., de Albuquerque Nunes, P.A., Martins, A.P., & Moulin, C.H. (2020). System diversification and grazing management as resilience-enhancing agricultural practices: The case of crop-livestock integration. Agricultural Systems184, 102904. https://doi.org/10.1016/j.agsy.2020.102904
  42. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education2, 53. https://doi.org/5116/ijme.4dfb.8dfd
  43. Varyvoda, Y., & Taren, D. (2022). Considering ecosystem services in food system resilience. International Journal of Environmental Research and Public Health19(6), 3652. https://doi.org/10.3390/ijerph19063652
  44. Volkov, A., Žičkienė, A., Morkunas, M., Baležentis, T., Ribašauskienė, E., & Streimikiene, D. (2021). A multi-criteria approach for assessing the economic resilience of agriculture: The case of Lithuania. Sustainability13(4), 2370. https://doi.org/10.3390/su13042370
  45. Wu, R.M., Zhang, Z., Yan, W., Fan, J., Gou, J., Liu, B., & Wang, Y. (2022). A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement. PloS One, 17(1), e0262261. https://doi.org/10.1371/journal.pone.0262261
  46. Yang, L.N., Pan, Z.C., Zhu, W., Wu, E.J., He, D.C., Yuan, X., Qin, Y.Y., Wang, Y., Chen, R.S., Thrall, P.H., Burdon, J.J., Shang, L.P., Sui, Q.J., & Zhan, J. (2019). Enhanced agricultural sustainability through within-species diversification. Nature Sustainability2(1), 46-52. https://doi.org/1038/s41893-018-0201-2
  47. Zampieri, M., Weissteiner, C.J., Grizzetti, B., Toreti, A., van den Berg, M., & Dentener, F. (2020). Estimating resilience of crop production systems: From theory to practice. Science of the Total Environment735, 139378. https://doi.org/10.1016/j.scitotenv.2020.139378
  48. Zandi, R, (2017). Climatic classification of Razavi-Khorasan province with de Martonne mrthod using geographic information system. New Research in Geographical Sciences, Architecture and Urban Planning, 10(1): 21-34.
  49. Zhang, J., Ren, W., An, P., Pan, Z., Wang, L., Dong, Z., & Tian, H. (2015). Responses of crop water use efficiency to climate change and agronomic measures in the semiarid area of northern China. PloS One10(9), e0137409. https://doi.org/10.1371/journal.pone.0137409

 

 

CAPTCHA Image