تحلیل پایداری نظام تولید گندم (Triticum aestivum L.)و جو (Hordeum vulgare L.) دیم در ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه اقتصاد منابع طبیعی و محیط زیست، موسسه پزوهش‌های برنامه‌ریزی، اقتصاد کشاورزی و توسعه روستایی، تهران، ایران.

2 گروه کشاورزی، دانشگاه پیام نور تهران، ایران

چکیده

در کنار افزایش تولید، توجه به اثرات زیست‌محیطی و به حداقل رساندن آن نیز از مسائل مهم و ضروری در برنامه­ریزی و سیاست‌گذاری بخش کشاورزی است. در این مطالعه، پایداری تولید گندم و جو دیم که بخش اعظم سطح زیر کشت غلات دیم کشور را به خود اختصاص می‌دهد با استفاده از شاخص ردپای اکولوژیک چند کارکردی برای سال زراعی 96- 1395 بررسی شد. برای انجام تحلیل پایداری از داده‌های موجود در منابع اطلاعاتی شامل سامانه وزارت جهاد کشاورزی، آمارنامه کشاورزی و نیز آمار و اسناد انتشار یافته در بانک‌های اطلاعاتی داخلی و خارجی استفاده شد. در این تحقیق، زمین بهره­ور زیستی به‌عنوان شاخص ردپای اکولوژیک مستقیم و میزان زمین لازم برای جذب مواد زائد حاصل از فرآیند تولید به‌عنوان ردپای غیرمستقیم در نظر گرفته شد. پس از محاسبه شاخص ردپای اکولوژیک برای یک هکتار مزارع گندم (Triticum aestivum L.) و جو دیم (Hordeum vulgare L.)، شاخص ردپا بر مبنای واحدهای مختلف کارکردی، عملکرد، محصول و سود محاسبه شد. نتایج این مطالعه نشان داد که دامنه شاخص ردپای اکولوژیک تولید یک هکتار گندم دیم بین 57/2 در استان‌ خراسان جنوبی تا 87/2 هکتار جهانی در استان البرز بود و برای تولید یک هکتار جو دیم در کشور از 57/2 در استان‌ها خراسان جنوبی تا 73/2 هکتار جهانی در استان مرکزی متغیر بود. شاخص ردپای اکولوژیک بر مبنای عملکرد نشان داد که تولید یک تن گندم­دیم در استان‌های مازندران، اردبیل و گلستان در وضعیت پایدارتری نسبت به سایر استان­ها قرار دارد. همچنین پایداری زیست‌محیطی تولید یک تن جو دیم استان‌های مازندران، البرز و گیلان در وضعیت مطلوب‌تری در سطح کشور قرار دارد. نتایج همبستگی نشان داد که بین شاخص ردپای اکولوژیک و ردپای اکولوژیک عملکرد در تولید گندم دیم رابطه معنی‌داری وجود دارد، ولی این رابطه در مورد جو دیم مشاهده نشد. همچنین رابطه معنی‌داری بین ردپای اکولوژیک بر مبنای عملکرد و سود مشاهده نشد که عدم مدیریت هزینه در تولید دو محصول گندم و جو دیم را نشان می‌دهد. بر این اساس، می‌توان نتیجه گرفت که کاربرد نهاده­های شیمیایی در این استان‌ها تنها سبب افزایش آلایندگی شده و افزایش سودآوری را به دنبال نداشته است، بنابراین توصیه می‌شود با توجه به شرایط اقلیمی این مناطق، میزان بهینه کاربرد نهاده­های کشاورزی در بین کشاورزان پیشنهاد و ترویج شود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Evaluation of Sustainability Analysis of Rainfed Wheat (Triticum aestivum L.) and Barley (Hordeum vulgare L.)Production Systems in Iran

نویسندگان [English]

  • Mohammad Jafar Esfahani 1
  • Hamed Javadi 2
1 Agricultural Planning, Economics and Rural Development Research Institute, Tehran, Iran
2 Department of Agriculture, Payame Noor University, Tehran, Iran.
چکیده [English]

Introduction
Wheat and barley are important strategic crops that constitute the staple food of the world population including Iranian people. Given the role of these crops in the household food basket, food safety and self-sufficiency in the production of these crops can be an important and valuable step towards economic independence. Increasing agricultural production due to the use of chemical inputs causes serious damage to the environment. Therefore, any plan and policy to increase production, in addition to technical and economic aspects, must also be analyzed from an environmental perspective. Considering the importance of this issue, the present study aims to investigate the sustainability of rainfed wheat and barley production using the multifunctional ecological footprint (EF). The results can provide useful information to agricultural planners and policymakers.
Materials and Methods
To analyze sustainability, data from Agricultural Statistics of 2017 and the statistics published in domestic databases were used. In the agricultural sector, the footprint indicator should reflect the type of agricultural operations and land use. Accordingly, the EF is divided into two parts: direct and indirect parts of the footprint. The direct footprint indicates the amount of land, buildings, forests, and rangelands for crop production that is defined as the amount of bio-productive area. The indirect footprint represents the amount of bio-productive land used to absorb the amount of CO2 emitted during crop production and agricultural operations.
Other aspects and benefits of EF are the use of different functional units that can provide researchers with broader analytical backgrounds. For this purpose, evaluating EF based on a ton of crops, 10,000 Rials income and benefits in the field were also calculated using divided EF by each of the different functional units.
Results and Discussion
Concerning rainfed wheat production, Alborz, Mazandaran, and Golestan provinces had the highest emissions by 1632, 1140 and 860 kgCO2eq, respectively and Sistan and Baluchestan, South Khorasan and Qom provinces had the lowest emissions. Concerning rainfed barley production, Markazi, Hamedan, and Mazandaran provinces emitted 989, 869, and 775 kg CO2eq, respectively, so that they were ranked first whereas Sistan and Baluchestan, South Khorasan and Isfahan provinces with 236, 263 and 298 kg CO2eq had the lowest emissions. EF for rainfed wheat production ranges from 2.57 in South Khorasan to 2.87 in Alborz. EF for rainfed barley ranges from 2.57 in South Khorasan to 2.73 in Markazi. With respect to rainfed wheat and barley production, on-farm emissions had a higher share in indirect EF than off-farm emissions. EF for one ton of rainfed wheat varied from 0.75 Gha in Mazandaran province to 10.85 Gha in South Khorasan province. EF yield of rainfed barley production indicates that Fars, Isfahan, and South Khorasan provinces are in the most unsustainable conditions for producing one ton of rainfed barley.
The results of correlation between EF and yield EF and benefit revealed a significant relationship between EF of rainfed wheat and barley in provinces at the 1% probability level. Also, there was a significant relationship between EF and yield EF in rainfed wheat at the 5% probability level, but this relation was not significant for rainfed barley. Also, the lack of a significant relationship between EF yield and EF profit shows that an increase in crop yield would not necessarily lead to an increase in the benefit of rainfed wheat and barley.
Conclusion
The comparison of EF indices and correlation between them showed that increasing inputs in rainfed wheat could increase yield, but it had no effect on barley yield enhancement. On the other hand, no statistically significant relationship between EF yield and benefit showed that yield increase does not necessarily lead to higher profitability. Therefore, cost management is one of the key elements in increasing the profitability of rainfed cereal production at the national level. Therefore, to increase the sustainability of rainfed cereal production at the national level, apart from planning to increase yield, policy-making for efficient use of resources and reducing production costs should be considered a key basis in production planning and policy-making.

کلیدواژه‌ها [English]

  • Ecological footprint
  • Greenhouse gas emissions
  • global hectare
Ahmadi, K., Abadzadeh, H., Abdashah, H., Kazemian, A., and Rafiee, M., 2018. Agricultural Statistics (Crop year 2016-2017). Ministry of Agriculture Jihad Publications. Available at: Web site http:// https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj1-95-96-site.pdf. (In Persian)
Alam, M.M., Murad, M.W., Noman, A.H.M., and Ozturk, I., 2016. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators 70: 466–479.
Alhajj Ali, S., Tedone, L., Verdini, L., and De Mastro, G., 2017. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. Journal of Cleaner Production 140: 608-621.
Aşıcı, A.A., and Acar, S., 2018. How does environmental regulation affect production location of non-carbon ecological footprint? Journal of Cleaner Production 178: 927–936.
Bilgili, F., and Ulucak, R., 2018. Is there deterministic, stochastic, and/or club convergence in ecological footprint indicator among G20 countries? Environmental Science and Pollution Research 25(35): 35404–35419.
Bilgili, F., Ulucak, R., and Koçak, E., 2019. Implications of Environmental Convergence: Continental Evidence Based on Ecological Footprint. In M. Shahbaz and D. Balsalobre (Eds.), Energy and Environmental Strategies in the Era of Globalization. Springer International Publishing, Switzerland .p.133-165..
Cerutti, A.K., Bagliani, M., Beccaro, G.L., and Bounous, G., 2010. Application of ecological footprint analysis on nectarine production: methodological issues and results from a case study in Italy. Journal of Cleaner Production 18(8): 771-776.
Cerutti, A.K., Beccaro, G.L., Bagliani, M., Donno, D., and Bounous, G., 2013. Multifunctional ecological footprint analysis for assessing eco-efficiency: A case study of fruit production systems in Northern Italy. Journal of Cleaner Production 40: 108-117.
Colombo, U., 2001. The Club of Rome and sustainable development. Futures 33(1):7–11.
Danish Baloch, M.A., and Wang, B., 2019. Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience. Structural Change and Economic Dynamics 51: 119-125.
Danish, A., and Wang, Z., 2019. Investigation of the ecological footprint’s driving factors: What we learn from the experience of emerging economies. Sustainable Cities and Society 49: 101626. https://doi.org/10.1016/j.scs.2019.101626
Destek, M.A., and Sinha, A., 2020. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. Journal of Cleaner Production 242: 118537.
Esfahani, S., and Khazaee, J., 2019. Application of multifunctional ecological footprint in sustainability analysis of saffron production in southern Khorasan. Saffron Agronomy and Technology 7(4): 491-503. (In Persian with English Summary)
Esfahani, S.M.J., Naderi Mahdei, K., Saadi, H., and Dourandish, A., 2017. Efficiency and sustainability of silage corn production by data envelopment analysis and multi-functional ecological footprint: Evidence from Sarayan County, Iran. Journal of Agricultural Science and Technology 19 (Supplementary Issue), 1453-1468. Retrieved from http://jast.modares.ac.ir/article_18026_f69b88799547729b2e0e0958262da232.pdf. (In Persian with English Summary)
 Galli, A., Halle, M., and Grunewald, N., 2015. Physical limits to resource access and utilisation and their economic implications in Mediterranean economies. Environmental Science and Policy 51: 125-136.
Gan, Y., Liang, C., Mar, W., Malhi, S., Niu, J., and Wang, X., 2012. Carbon footprint of spring barley in relation to preceding oilseed and N fertilization. The International Journal of Life Cycle Assessment 17(5): 635-645.
González-Vallejo, P., Marrero, M., and Solís-Guzmán, J., 2015. The ecological footprint of dwelling construction in Spain. Ecological Indicators 52: 75-84.
Houshyar, E., Dalgaard, T., Tarazkar, M.H., and Jorgensen, U., 2015. Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production 89: 99-109.
Huijbregts, M.A.J., Hellweg, S., Frischknecht, R., Hungerbühler, K., and Hendriks, A.J., 2008. Ecological footprint accounting in the life cycle assessment of products. Ecological Economics 64(4): 798-807.
Karimi, V., Sadrabadi Haghighi, R., Bazregar, A.B., and Dargahi, M., 2018. Energy efficiency comparison of potato (Solanum tuberosum L.) production in different irrigation methods in Jolgeh Rokh Torbat Heidarieh Region. Agroecology 11(3): 859-876. (In Persian with English Summary)
Khoshnevisan, B, Rafiee, S., Omid, M., Yousefi, M., and Movahedi, M., 2013. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52: 333-338.
Martin-Gorriz, B., Soto-García, M., and Martínez-Alvarez, V., 2014. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios. Energy 77: 478-488.
Mohammadi, A, Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S., 2014. Energy use efficiencyand greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 30: 724-733.
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M.T., Keyhani, A., and Hermansen, J.E., 2013. Potential greenhouse gas emission reductions in soybean farming: A combined use of life cycle assessment and data envelopment analysis. Journal of Cleaner Production 54: 89-100.
Monfreda, C., Wackernagel, M., and Deumling, D., 2004. Establishing national natural capital accounts based on detailed Ecological Footprint and biological capacity assessments. Land Use Policy 21: 231-246.
Moore, J., Kissinger, M., and Rees, W.E., 2013. An urban metabolism and ecological footprint assessment of Metro Vancouver. Journal of Enviromental Management 124: 51-61.
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., and Mobtaker, H.G., 2014. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production 65: 311-317.
Naderi Mahdei, K., Bahrami, A., Aazami, M., and Sheklabadi, M., 2015. Assessment of agricultural farming systems sustainability in Hamedan province using ecological footprint analysis (Case study: irrigated wheat). Journal of Agricultural Science and Technology 17(6): 1409-1420. (In Persian with English Summary)
Nassiri Mahallati, M., Koocheki, A., and Khorramdel, S., 2019. Temporal trends of ecological footprint of foodstuffs in Iran and evaluation of future scenarios. Journal of Agroecology 10(4):1035-1050. (In Persian with English Summary)
NF, A., 2017. Working guidebook to the national footprint accounts global footprint network report (2016 edition). 73. (April), Retrieved from http://www.footprintnetwork.org/ images/article_uploads/NFA2014Guidebook7-14-14.pdf.
Nguyen, T.L.T., and Hermansen, J.E., 2012. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy 89(1): 254-261.
Niccolucci, V., Galli, A., Kitzes, J., Pulselli, R.M., Borsa, S., and Marchettini, N., 2008. Ecological footprint analysis applied to the production of two Italian wines. Agriculture, Ecosystems and Environment 128: 162-166.
Patterson, M., McDonald, G., and Hardy, D., 2017. Is there more in common than we think? Convergence of ecological foot printing, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Model 362: 19-36.
Pishgar-Komleh, S.H., Omid, M., and Heidari, M.D., 2013. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 59: 63-71.
Rajaniemi, M., Mikkola, H., and Ahokas, J., 2011. Greenhouse gas emissions from oats, barley, wheat and rye production. Agronomy Research 9(1): 189-195.
Rashid, A., Irum, A., Malik, I.A., Ashraf, A., Rongqiong, L., Liu, G., and Yousaf, B., 2018. Ecological footprint of Rawalpindi; Pakistan's first footprint analysis from urbanization perspective. Journal of Cleaner Production 170: 362-368.
Šarauskis, E., Masilionytė, L., Juknevicius, D., Buragienė, S., and Kriauciuniene, Z., 2019. Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation. Energy, 172: 1151-1160.
Toth, G., and Szigeti, C., 2016. The historical ecological footprint: from over-population to overconsumption. Ecological Indicators 60: 283–291.
Ulucak, R., and Apergis, N., 2018. Does convergence really matter for the environment? An application based on club convergence and on the ecological footprint concept for the EU countries. Environmental Science and Policy 80: 21–27.
Ulucak, R., and Bilgili, F., 2018. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries. Journal of Cleaner Production 188: 144-157.
Vafabakhsh, J., and Mohammadzadeh, A., 2019. Energy flow and GHG emissions in major field and horticultural crop production systems (Case study: Sharif Abad plain). Agroecology 11(2): 365-382. (In Persian with English Summary)
Xia, L., Xia, Y., Ma, S., Wang, J., Wang, S., Zhou, W., and Yan, X., 2016. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13(15): 4569-4579.
Zafar, M.W., Zaidi, S.A.H., Khan, N.R., Mirza, F.M., Hou, F., and Kirmani, S.A.A., 2019. The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States. Resources Policy 63: 101428.
CAPTCHA Image