اثر غلظت نیتروژن بقایا و گذشت زمان بر دینامیک بقایای گیاه یونجه (Medicago sativa L.) در مناطق با شرایط آب و هوایی مختلف

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، ایران

چکیده

توازن کربن در بوم نظام های زمینی از اختلاف بین کربن ورودی از طریق بقایای گیاهی و برگشت کربن به اتمسفر از طریق تجزیه مواد آلی تعیین می گردد و تجزیه مواد آلی خود توسط عوامل زنده و غیرزنده مانند کیفیت بقایا و شرایط اقلیمی کنترل می شود. بر این اساس هدف این پژوهش بررسی معدنی شدن کربن بقایای گیاه یونجه (Medicago sativa L.) در شرایط آب و هوایی مختلف می باشد. برای این منظور آزمایشی به صورت اسپلیت پلات در زمان بر پایه طرح کاملاً تصادفی در سه شرایط آب و هوایی اجرا گردید و اثر شرایط آب و هوایی از طریق تجزیه مرکب آنالیز شد. فاکتورهای مورد بررسی شامل منطقه در سه سطح (جیرفت، نراب و ساردوئیه)، غلظت نیتروژن بقایا در سه سطح (کم، متوسط و زیاد) و زمان نمونه برداری در چهار سطح (دو، چهار، شش و هشت ماه پس از شروع آزمایش) بود. تعیین اقلیم به روش تحلیل خوشه ای و آزمایش به روش کیسه لاشبرگ انجام گردید و کیف های کلش در سطح خاک قرار داده شدند. نتایج نشان داد که منطقه، غلظت نیتروژن بقایا و زمان نمونه برداری تأثیر معنی داری بر مقدار کربن باقیمانده، هدررفت و ثابت سرعت تجزیه کربن داشت. اثرات متقابل مناطق و گذشت زمان تأثیر معنی داری بر کربن باقیمانده و ثابت سرعت تجزیه کربن داشت. به طوری که بیشترین کربن باقیمانده در منطقه جیرفت و بیشترین ثابت سرعت تجزیه کربن در منطقه ساردوئیه اندازه گیری شد. در منطقه جیرفت علی رغم بالاتر بودن دما هدررفت و ثابت سرعت تجزیه کربن کمتر از منطقه ساردوئیه بود، به دلیل مناسب بودن دما در ماه های فروردین تا آبان ماه در مناطق مورد مطالعه به نظر می رسد رطوبت در طی این ماه ها فاکتور مهمی برای تجزیه بقایای گیاهی است و در منطقه ساردوئیه در طی هشت ماه 6/30 درصد هدررفت کربن وجود داشت. در هر سه منطقه بیشترین ثابت سرعت تجزیه کربن در ماه های فروردین و اردیبهشت مشاهده شد. افزون بر این، با افزایش غلظت نیتروژن بقایا، کربن باقیمانده کاهش و هدررفت و ثابت سرعت تجزیه کربن افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

نویسندگان [English]

  • Saeid Shafiei
  • Ahmad Golchin
  • Mohammad Amir Delavar
Department of Soil Science, Faculty of Agriculture, University of Zanjan, Iran
چکیده [English]

Introduction
Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC) and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates.
Material and methods
Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft), temperate arid (Narab) and cold semi-arid (Sardouiyeh) using cluster analysis and the nitrogen (N) concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months). The dynamics of organic carbon in different regions measured using litter bags (20×10 cm) containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface.
Results and discussion
The results of this study showed that in a warm-arid (Jiroft), carbon loss and the carbon decomposition rate constant were low in a cold semi-arid (Sardouiyeh). The most suitable temperatures occurred from April to October in arid and semiarid climates and soil moisture is probably the key contributor to the rate of decomposition. The highest carbon loss in alfalfa in the cold, semiarid climate for a period of 8 months was 32.64%. The highest carbon decomposition rate constant was observed in the first 2 months of the incubation time. These results indicate that higher nitrogen residue resulted in greater decomposition of plant residue and lower carbon remaining in all tested climates. The higher nitrogen content of plant residue potentially increases the concentration of nitrogen in crop residue and may increase the decomposition rate.
The strong relation between decomposition and climate has led to the belief that favorable climatic conditions can increase the decomposition rate on a global scale and positively decrease and distribute greenhouse gases in the atmosphere. In arid and semi-arid ecosystems, it is difficult to assess the decomposition rate based on climatic data; it seems to be related to temperature and available humidity. Furthermore, Austin & Vivanco (2006) reported that, in semi-arid climates, the litter decomposition rate decreased by 60 % when solar radiation was attenuated; they concluded that photodegradation exerts dominant control over litter decomposition in a dry ecosystem.
Conclusions
The results showed that, precipitation of the study area and soil moisture played a key role in the plant residue decomposition rate. In the cold semi-arid climate which moisture was available for decomposition of plant residues for a longer period of time, OC loss and decomposition rate constant were higher than those obtained for warm-arid and temperate-arid climatic conditions. It may be concluded that crop fertilization, which increases P and N concentrations of plant residue, increases decomposition rate of plant residue but decrease its mean residence time in soils.

کلیدواژه‌ها [English]

  • Carbon decomposition rate constant
  • Carbon loss
  • Climate condition
Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79: 439-449.
Aerts, R. 2006. The freezer defrosting: Global warming and litter decomposition rate in cold biomes. Journal of Ecology 94: 713-724.
Aerts, R., and Caluwe, H. 1997. Nutritional and plant–mediated controls on leaf litter decomposition of Carex species. Ecology 78: 244-260.
Aerts, R., Logtestijn, R.S.P., and Karlsson, P.S. 2006. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia 146: 652-658.
Amundson, R.G., Chadwick, O.A., and Sowers, J.M. 1989. A comparison of soil climate and biological activity along an elevational gradient in the eastern Mojave desert. Oecologia 80: 395-400.
AOAC: Official Methods of analysis, Method 978.04.
Austin, A.T., and Vivanco, L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442: 555-558.
Baldock, J.A. 2007. Composition and cycling of organic carbon in soil. In: Marshner, P., and Rengel, Z. (Eds). Nutrient Cycling in Terrestrial Ecosystems. Springer- Verlag Berlin Heidelberg p. 1-35.
Berg, B., and MacClaughtery, C. 2008. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer- Verlag. New York.
Berg, B., and Laskowski, R. 2006. Litter decomposition: A guide to carbon and nutrient turnover. Advances in Ecological Research. Elsevier, Amsterdam p. 421.
Binkley, D., Kaye, J., Barry, M., and Ryan, M.J. 2004. First-rotation changes in soil carbon and nitrogen in a Eucalyptus plantation in Hawaii. Soil Science Society of American Journal 68: 1713-1719.
Bohlen, P.J., Parmalee, R.W., McCartney, D.A., and Edwards, C.A. 1997. Earthworm effects on carbon and nitrogen dynamics of surface litter in corn agro-ecosystems. Ecological Applications 7(4): 1341-1349.
Cao, M., and Woodward, F.I. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393: 249-252.
Carter, M.R., and Gregorich, E.G. 2008. Soil sampling and methods of analysis. CRC Press. Taylor and Francis Group. 6000 Broken Sound Parkway NW, Suite 300. Boca Raton, FL 33487-2742.
Cepeda-Pizarro, J.G., and Whitford, W.G. 1989. Decomposition patterns of surface leaf litter of six species along a Chihuahuan desert watershed. American Midland Naturalist 123: 319-330.
Cleveland, C.C., Reed, S.C., and Townsend, A.R. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87(2): 492-503.
Constantinides, M., and Fownes, J.H. 1994. Nitrogen mineralization from leaves and residue of tropical plants: Relationship to nitrogen, lignin and soluble polyphenol concentration. Soil Biology and Biochemistry 26: 49-55.
Couteaux, M.M., Bottner, P., and Berg, B. 1995. Litter decomposition, climate and litter quality. Tree 10: 63-66.
Dechaine, J., Ruan, H., Sanchez de Leon, Y., and Zou, X. 2005. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico. Pedobiologia 49(6): 601-607.
Eiland, F., Klamer, M., Lind, A.M., Leth, M., and Baath, E. 2001. Influence of initial C/N ratio on chemical and microbial composition during long term composition of straw. Microbial Ecology 41: 272-280.
Frank, A.B., Liebig, M.A., and Hanson, J.D. 2002. Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biology and Biochemistry 34: 1235-1241.
Gallo, M.E., Porras-Alfaro, A., Odenbach, K.J., and Sinsabaugh, R.L. 2009. Photo-acceleration of plant litter decomposition in an arid environment. Soil Biology and Biochemistry 41: 1433-1441.
Galloway, J.N., Schlesinger, W., Levy, I.I.H., Michaels, A., and Schnoor, J. 1995. Nitrogen fixation: Anthropogenic enhancement- environmental response. Global Biogeochemical Cycle 9: 235-252.
Gee, G.W., and Bauder, J.W. 1986. Particle size analysis p. 383-411. In: Klute, A. (ed). Methods of soil analysis. Guilford Rd., Madison, USA.
Giardina, C.P., and Ryan, M.G. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404: 858-861.
Giardina, C.P., Ryan, M.G., Hubbard, R.M., and Binkley, D. 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of American Journal 65: 1272-1279.
Goh, T.B., Arnaud, R.J., and Mermut, A.R. 1993. Aggregate stability to water p. 177-180. In: Carter, M.R. (Ed.). Soil sampling and methods of analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton.
Hattenschwiler, S., and Gasser, P. 2005. Soil animals alter plant litter diversity effects on decomposition. PNAS 102: 1519-1524.
Heal, O.W., Aderson, J.M., and Swift, M.J. 1997. Plant litter quality decomposition: An historical overview p. 47- 66. In: Cadish, G., and Giller, K.E. (Eds.). Driven by nature, plant litter quality and decomposition. CAB International: Wallingford, UK.
Hobbie, S.E., and Vitousek, P.M. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81: 1867- 1877.
Jenkinson, D.S. 2001. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228: 3-15.
Jenkinson, D.S., Adams, D.E., and Wild, A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304-306.
Jonsson, M., and Wardle, D. 2008. Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. Oikos 117: 1674-1682.
Kirschbaum, M.F. 2006. The temperature dependence of organic matter decomposition still a topic of debate. Soil Biology and Biochemistry 38: 2510-2518.
Klopatek, C.C., Murphy, K.L., Rosen, J., Obst, J.R., and Klopatek, J.M. 1994. Preliminary results of decomposition and cellulose degradation along an environmental gradient in northern Arizona p. 46-53. In: Desired future condition for pinon-juniper ecosystems. General Technical Report RM-258. USDA Forest Service, Fort Collins, Colorado, USA.
Knorr, M., Frey, S.D., and Curtis, P.S. 2005. Nitrogen additions and litter decomposition: A meta- analysis. Ecology 86: 3252-3257.
Kogel-Knabner, I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 34: 139-162.
Kovar, J.L., and Pierzynski, G.M. 2009. Method for P analysis for soils, sediments, residuals and waters. Southern Cooperative Series Bulletin No. 408.
Lal, R. 2007. Soil science and the carbon cavitations. Soil Science Society of American Journal 71: 1425-1437.
Lal, R., Follett, R.F., Kimble, J., and Cole, C.V. 1999. Managing US cropland to sequester carbon in soil. Journal of Soil and Water Conservation 54: 374-381.
Lal, R., Kimble, J.M., Follet, R.F., and Cole, V.R. 1998. The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Sleeoing Bear Press, Ann Arbor, MI, 128 pp.
Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1626.
Lettens, S., Orshoven, J.V., Wesemael, B.V., DeVos, B., and Muys, B. 2005. Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma 127: 11-23.
Marshner, P., and Rengel, Z. 2007. Nutrient Cycling in Terrestrial Ecosystems. Springer- Verlag Berlin Heidelberg.
Maljanen, M., Komulainen, V.M., Hytonen, J.T., Martikainen, P.J., and Laine, J. 2004. Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil characteristics. Soil Biology and Biochemistry 36: 1801-1808.
Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465-472.
McNill, A., and Unkovich, M. 2007. The Nitrogen Cycle in Terrestrial Ecosystems. In: Marshner, P., and Rengel, Z. (Eds.). Nutrient Cycling in Terrestrial Ecosystems. Springer- Verlag Berlin Heidelberg p. 37-64
Mielnick, P.C., and Dugas, W.A. 2000. Soil CO2 flux in a Tallgrass prairie. Soil Biology and Biochemistry 32: 221-228.
Moorhead, D.L., Currie, W.S., Rastetter, E.B., Parton, W.J., and Harmon, M.E. 1999. Climate and litter quality controls on decomposition: An analysis of modeling approaches. Global Biochemical Cycles 13(2): 575-589.
Murphy, K.L., Klopatek, J.M., and Klopatek, C.C. 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Application 8(4): 1061-1071.
Nassiri Mahallati, M., Koocheki, A., Moradi, R., and Mansoori, H. 2015. Long term estimation of carbon dynamic and sequestration for Iranian agroecosystem: II- Sequestration and emission of carbon for common gricultural crops using ICBM model. Journal of Agroecology 7(3): 299-314.
Nelson, D.W., and Sommer, L.E. 1982. Total Carbon, Organic Carbon, and Organic Matter. In: A.L. Page (Eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. Madison, WI. p. 595-624.
Nierop, K.G.J., Pulleman, M.M., and Marinissen, J.C.Y. 2001. Management induced organic matter differentiation in grassland and arable soils: A study using pyrolysis techniques. Soil Biology and Biochemistry 33: 775-764.
Ogle, S.M., Jay, B.F., and Paustian, K. 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72: 87-121.
Olson, J.S. 1963. Energy storage and balance of producers and decomposition in ecological systems. Ecology 44: 322-331.
Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.P., and, J.D. 1994. Responses of trace gas flues and N availability to experimentally elevated soil temperatures. Ecological Applications 4: 617-625.
Pangle, R.E. 2000. Soil CO2 efflux in response to fertilization and mulching treatments in two-year- old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont, Thesis in Master of Science, Faculty of Virginia Polytechnic Institute and State University.
Paul, E., and Clark, F. 1996. Soil Microbiology and Biochemistry, Academic, New York. USA.
Paul, E.A. 2007. Soil Microbiology. Ecology and Biochemistry. Academic, New York. USA.
Raich, J.W., and Nadelhoffer, K.J. 1989. Belowground carbon allocation in forest ecosystems: Global trends. Ecology 70: 1346-1354.
Reicosky, D.C., Reeves, D.W., Prior, S.A, Runion, G.B., Rogers, H.H., and Raper, R.L. 1999. Effects of residue management and controlled traffic on carbon dioxide and water loss. Soil and Tillage Research 52: 153-165.
Robertson, G.P., and Paul, E.A. 1999. Decomposition and soil organic matter dynamics. In: Sala, O.E., Jackson, R. B., Mooney, H.A., and Howarth, R.W. (Eds.). Methods of Ecosystem Science. Spinger- Verlag, New York p. 104-116.
Rochette, P., Angers, D.A., and Cote, D. 2000. Soil carbon and nitrogen dynamics following application of pig Slurry for the 19th consecutive Year: Carbon dioxide fluxes and microbial biomass carbon. Soil Science Society of American Journal 64: 1389-1395.
Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., and Gurevitch, J. 2001. A meta- analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562.
Sanchez, M.L., Ozores, M.I., Lopez, M.J., Colle, R., De Torre, M.A., and Perez, G.I. 2003. Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology 118: 85-95.
Schimel, D.S., Braswell, B.H., Holland, E., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., and Townsend, A.R. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles 8: 279-293.
Song, C., Liu, D., Yang, G., Song, Y., and Mao, R. 2011. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from fresh water marshes of Northeast China. Ecological Engineering 37: 1578-1582.
Soon, Y.K., and Arshad, M.A. 2002. Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues. Biology and Fertility of Soils 36: 10-17.
Steinberger, Y., Shmida, A., and Whitford, W.G. 1990. Decomposition along a rainfall gradient in the Judean desert Israel. Oecologia 82: 322-324.
Swift, M.J., Heal, O.W., and Anderson, J.M. 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford p. 372.
Throop, H.L., and Archer, S.R. 2009. Resolving the dry land decomposition conundrum: Some new perspective on potential drivers. In: Luttge , U., Beyschlag, W., Budel, B., and Francis, D. (Eds.). Progress in Botany. Vol. 70. Springer-Verlag. Berlin p. 171-194.
Vaieretti, M.V., Perez, H.N., and Gurvich, D.E. 2005. Decomposition dynamics and physico-chemical leaf quality of abundant species in montane woodland in central Argentina. Plant and Soil 21: 205-278.
Vanderbilt, K.L., White, C.S., Hopkins, O., and Craig, J.A. 2008. Aboveground decomposition in arid environments: results of long- term study in central New Mexico. Journal of Arid Environment 72: 275-709.
Vitousek, P., Aber, J., Howarth, R., Likens, G., Matson, P., Schindler, D., Schlesinger, W., and Tilman, D. 1997. Human alterations of the global nitrogen cycle: Sources and consequences. Ecological Application 7: 737-750.
Vivanco, L., and Austin, A.T. 2010. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentia. Global Change Biology 10: 1363-1974
Von Arnold, K., Nilsson, M., Hanell, B., Weslien, P., and Klemedtsson, L. 2005. Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biology and Biochemistry 37: 1059-1071.
Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63: 251-263.
Wilken, G.C. 1991. Sustainable agriculture is the solution, but what is the problem? Occas. No. 14 BIFADEC, [U. S.] Agency for International Development. Washington DC.
CAPTCHA Image