##plugins.themes.bootstrap3.article.main##

مهدی نصیری محلاتی علیرضا کوچکی مریم جهانی

چکیده

در این تحقیق نوسانات درون مزرع‌های عملکرد گندم و رابطه آن با توزیع مکانی تراکم علف¬‌های هرز و میزان نیتروژن خاک با استفاده از روش‌های زمین آمار مورد ارزیابی قرار گرفت. نمونه¬گیری در منطقه¬ای با ابعاد 120×90 متر واقع در مزرعه¬ای به مساحت 8/3 هکتار انجام شد. میزان نیتروژن خاک و تراکم علف‌های هرز در مرحله پنجه¬زنی و عملکرد دانه در هنگام رسیدگی کامل از مساحت یک مترمربع واقع در مرکز شبکه‌‌های 10×10 متری تعیین شد. نوسانات مکانی عملکرد گندم بین 9/4-5/1 با میانگین 3/3 تن در هکتار و ضریب تغییرات (CV) 29 درصد بود در حالی‌که تراکم علف‌‌های هرز (با میانگین 2/2 بوته در مترمربع) و نیتروژن خاک (با میانگین 05/0 درصد) تنوع بیشتری داشته و CV آن‌ها به ترتیب 55 و 41 درصد بود. نتایج رگرسیون چند متغیره نشان داد که نیتروژن خاک و تراکم علف‌های هرز بدون در نظر گرفتن توزیع مکانی آن¬ها، در حدود 80 درصد از نوسانات عملکرد گندم را توصیف کردند. سمی واریوگرام4 مربوط به هر متغیر در دو فاصله نمونه¬گیری 10 و 20 متری محاسبه و مدل مناسب به آن برازش داده شد. مقایسه خصوصیات آماری مدل‌‌های واریوگرم نشان داد که افزایش فاصله نمونه¬گیری موجب کاهش دقت برآورد شد. نقشه‌‌های توزیع مکانی با میان¬یابی (کریجینگ معمولی) بر مبنای مدل واریوگرام بر روی هر سه متغیر و نیز میان‌یابی توأم عملکرد با در نظر گرفتن تراکم علف¬هرز و میزان نیتروژن خاک به عنوان متغیر همراه تهیه شد و اعتبار مقادیر پیش¬بینی شده مورد مقایسه آماری قرار گرفت. نتایج نشان داد که دقت پیش¬بینی متغیر‌ها در فاصله نمونه‌گیری 10 متری مطلوب بود و میان¬یابی توأم عملکرد گندم با میزان نیتروژن خاک باعث افزایش قدرت پیش‌بینی شد. از طرفی میان¬یابی با اندازه¬گیری در فاصله 20 متری از دقت کافی برخوردار نبود ولی میان‌یابی توأم عملکرد با نیتروژن خاک در این فاصله نمونه‌گیری نیز باعث بهبود دقت پیش‌بینی شد.

جزئیات مقاله

مراجع
Bakhsh, A., Jaynes, D.B., Colvin, T.S., and Kanwar, R.S. 2000. Spatio- temporal analysis of yield variability for a corn–soybean field in Iowa. Transactions of the ASAE 43: 31-38.
Basso, B., Ritchie, J.T., Pierce, F.J., Jones, J.W., and Braga, R.N. 2001. Spatial validation of crop models for precision agriculture. Agricultural Systems 68: 97-112.
Basso, B., Fiorentino, C., Cammarano, D., Cafiero, G., and Dardanelli, J. 2012. Analysis of rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. European Journal of Agronomy 41: 52-65.
Bastiaans, L., Kropff, M.J., Goudriaan, J., and van Laar, H.H. 2000. Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop-weed interactions. Field Crops Research 67: 161-179.
Batchelor, W.D., Basso, B., and Paz, J.O. 2002. Examples of strategies to analyse spatial and temporal yield using crop models. European Journal of Agronomy 18: 141-158.
Boken, V.K., Hoogenboom, G., Hook, J.E., Thomas, D.L., Guerra, L.C., and Harrison, K.A. 2004. Agricultural water use estimation using geospatial modeling and a geographic information system. Agricultural Water Management 67: 185-199.
Booltink, H.W.G., van Alphen, B.J., Batchelor, W.D., Paz, J.O., Stoorvogel, J.J., and Vargas, R. 2001. Tools for optimizing management of spatially-variable fields. Agricultural Systems 70: 445-476.
Bostana, P.A., Heuvelink, G.B.M., and Akyurek, S.Z. 2012. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. International Journal of Applied Earth Observation and Geoinformtion 19: 115-126.
Calvino, P., and Sadras, V. 2002. On-farm assessment of constraints to wheat yield in the south-eastern Pampas. Field Crop Research 74: 1-11.
Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., and Konopka, A.E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58: 1501-1511.
Cassman, K.G. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences 96: 5952-5959.
Cook S.E., and Bramley, R.G.V. 2000. Coping with variability in agricultural production: implications for soil testing and fertilizer management. Communications in Soil Science and Plant Analysis 31: 1531-1551.
Cressie, N.A.C. 1993. Statistics for Spatial Data.Wiley, New York, NY, 900 pp.
Dille, J.A., Milner, M., Groeteke, J.J., Mortensen, D.A., and Williams, M.M. 2002. How good is your weed map? A comparison of spatial interpolators. Weed Science 51: 44-55.
Elbasiouny, H., Abowaly, M., Abu Alkheir, A., and Gad, A. 2014. Spatial variation of soil carbon and nitrogen pools by using ordinary kriging method in an area of north Nile Delta, Egypt. Catena 113: 70-78.
Eldeiry, A.A., and Garcia, L.A. 2010. Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images. Journal of Irrigation and Drainage Engineering 136: 27-28.
Fraisse, C.W., Sudduth, K.A., and Kitchen, N.R. 2001. Calibration of the CERES-Maize model for simulating site-specific crop development and yield on claypan soils. Applied Engineering In Agriculture 17(4): 547-556.
Franzen, D.W., and Peck, T.R. 1993. Soil sampling for variable rate fertilization. 1993 Illinois Ferterilzer Conference Proceedings, January 25-27. Springfield, IL.
Gao, R., Liu, S., Zhang, Y., Li, H., Huang, Y., Xia, X., Jiang, T., and Zhang, H. 2011. Temporal-spatial variability and fractal characteristics of soil nitrogen and phosphorus in Xinji District, Hebei Province, China. Environmental Monitoring and Assessment 174: 229-240.
Goovaerts, P. 1997. Geostatistics for natural resources evaluation. Oxford University Press, New York, NY, 512 pp.
Goovaerts, P. 1999. Geostatistics in soil science: state-of-the-art and perspective. Geoderma 89: 1-45.
Gotway, C.A., Ferguson, R.B., Hergert, G.W., and Peterson, T.A. 1996. Comparison of kriging and inverse distance methods for mapping soil parameters. American Journal of Soil Science 60: 1237-1247.
Guisan, A., and Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecol. Modell 135: 147-186.
Heisel, T., Ersboll, A.K., and Anderson, C.1999. Weed mapping with co-kriging using soil properties. Precision Agriculture 1: 39-52.
Hengl, T., Heuvelink, G.B.M., and Stein, A. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120: 75-93.
Heuvelink, G.B.M., and Webster, R. 2001. Modelling soil variation: past, present, and future. Geoderma 100: 269-301.
Irmak, A., Jones, J.W., Batchelor, W.D., and Paz, J.O. 2001. Estimating spatially variable soil properties for application of crop models in precision agriculture. Transactions of the ASAE 44(5): 1343-1353.
Irmak, A., Jones, J.W., Batchelor, W.D., and Paz, J.O. 2002. Linking multiple layers of information for diagnosing causes of spatial yield variability in soybean. Transactions of the ASAE 45(3): 839-849.
Isaaks, E.H., and Srivastava, R.M. 1989. An introduction to applied geostatistics. Oxford University Press, Oxford, UK.
Jahani, M. 2011. Investigation of agrobiodiversity in fields of Eastern region of Mashhad using general linear model. PhD thesis, Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
Jamieson, P.D., Porter, J.R., and Wilson, D.R. 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Fields Crop Research 27: 337-350.
Jaynes, D.B., and Colvin, T.S. 1997. Spatiotemporal variability of corn and soybean yield. Agronomy Journal 89: 30-37.
Liu, Y.,. Zhang, J.L.B., and Bi, J. 2013. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Science of the Total Environment 450-451: 108-119.
Lowenberg-DeBoer, J., and Erickson, K. 2000. Precision farming profitability. Purdue Univ., West Lafayette, IN.
Makarian, H., Rashed Mohassel, M.H., Banayan, M., and Nassiri, M. 2007. Spatial pattern analysis of weed seed bank population in saffron (Crocus sativus L.) field using geostatistics. Journal of Agricultural science and Technology 20(5): 133-147.
Miller, J., Franklin, J., and Aspinall, R. 2007. Incorporating spatial dependence in predictive vegetation models. Ecological Modelling 202: 225-242.
Oliver, M.A., and Webster, R. 2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 113: 56-69.
Oliver, Y.M., and Robertson, M.J. 2013. Quantifying the spatial pattern of the yield gap within a farm in a low rainfall Mediterranean climate. Field Crops Research 150: 29-41
Park, S.E., Benjamin, L.R., and Watkinson, A.R. 2003. The Theory and application of plant competition models: an agronomic perspective. Annals of Botany 92: 741-748.
Paz, J.O., Batchelor, W.D., Tylka, G.L., and Hartzler, R.G. 2001. A modeling approach to quantifying the effects of spatial soybean yield limiting factors. Transactions of the ASAE 44(5): 1329-1344.
Pierce, F.J., and Nowak, P. 1999. Aspects of precision agriculture. Advances in Agronomy 67: 1-85.
Pierpaoli, E., Carli, G., Pignatti, E., Canavari, M. 2013. Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology 8: 61-69.
Ping, J.L, Green, C.J., Zartman, R.E., and Bronson, K.F. 2004. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crops Research 89: 219-236.
Porter, P.M., Lauer, J.G., Huggins, D.R., and Oplinger, E.S. 1998. Assessing spatial and temporal variability of corn and soybean yields. Journal of Production Agriculture 11: 359-363.
Robinson, T.P., and Metternicht, G. 2005. Comparing the performance of techniques to improve the quality of yield maps. Agricultural Systems 85: 19-41.
Roel, A., and Plant, R.E. 2004. Spatiotemporal analysis of rice yield v Variability in two California fields. Agronomy Journal 96: 77-90.
Roger, A., Libohova, Z., Rossier, N., Joost, S., Maltas, A., Frossard, E., and Sinaj, S. 2014. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma 217-218: 26-36.
Sadler, E.J., Gerwig, B.K., Evans, D.E., Busscher, W.J., and Bauer, P.J. 2000. Site-specific modeling of corn yield in the SE Coastal Plain. Agricultural Systems 64(3): 189-207.
Siah-Marguee, A., Rashed-Mphassel, M.H., Nassiri Mahallati, M., Banayan Awal, M., and Rahimiyan Mashhadi, H. 2006. Evaluation of spatial variation of weeds and their response to imposed management in sugar beet field in Mashhad. Journal of Science and Technology of Agriculture and Natural Resources 10(3B): 361-374. (In Persian with English Summary)
Stein, A., and Ettema, C. 2003. An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons. Agriculture, Ecosystems and Environment 94: 31-47.
Viscarra Rossel, R.A., Goovaerts, P., and McBratney, A.B. 2001. Assessment of the production and economic risks of sitespecific limiting using geostatistical uncertainty modeling. Environmetrics 12: 699-711.
Walter, A.M., Christensen, S., and Simmelsgaard, S.E. 2002. Spatial correlation between weed species densities and soil properties. Weed Research 42: 26-38.
Webster, R., and Oliver, M.A. 1990. Statistical Methods in Soil and Land Resource Survey. Oxford University Press, New York, NY, 316 pp.
Wollenhaupt, N.C., Wolkowski, R.P., and Clayton, M.K. 1994. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. Journal of Production Agriculture 7: 441-448.
Wright, N.A. 1998. Soil fertility variograms from "True Point Sampling"™ on 20.0, 0.9, and 0.1 meter grids in two fields. Communications in Soil Science and Plant Analysis 29: 1649-1666 .
Zhu, Q., Lin, H.S., and Doolittle, J.A. 2013. Functional soil mapping for site-specific soil moisture and crop yield management. Geoderma 200-201: 45-54.
ارجاع به مقاله
نصیری محلاتی م., کوچکی ع., & جهانی م. (2017). برآورد نوسانات عملکرد در مزارع گندم به وسیله متغیر‌‌های مکانی: رهیافتی در کشاورزی دقیق. بوم شناسی کشاورزی, 8(3), 329-345. https://doi.org/10.22067/jag.v8i3.34502
نوع مقاله
علمی - پژوهشی

مقالات بیشتر خوانده شده از همین نویسنده

1 2 3 4 5 6 7 8 9 10 > >>