بررسی اثر تغییر اقلیم بر فراوانی وقوع رخدادهای نامطلوب آب و هوایی طی دوره رشد محصول گندم (مطالعه موردی: مناطق عمده تولید گندم‌دیم (Triticum aestivum L.) در ایران)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

یکی از پیامد­های تغییر اقلیم افزایش ریسک وقوع رخداد­های وخیم اقلیمی است که باعث اختلال در تولید مواد غذایی خواهند شد و انتظار می­رود فراوانی آنها در جهان افزایش یابد. تغییر اقلیم بر محیط تولید محصولات زراعی ازجمله مناطق عمده تولید گندم دیم (Triticum aestivum L.) در ایران (استان­های اردبیل، کردستان، کرمانشاه ،گلستان، همدان و زنجان) اثرگذار خواهد بود و می­تواند در این مناطق امنیّت غذایی را با خطر مواجه سازد. احتمال وقوع پدیده­های نامطلوب اقلیمی تأثیرگذار بر عملکرد محصول طی مراحل مختلف رشد و نمو برای سه رقم زود­رس، دیررس و میان­رس تعیین شد. برای تعریف پدیده­های نامطلوب از شاخص­های اگروکلیمایی (13 شاخص) در مقیاس روزانه که بر مبنای خروجی مجموعه مدل­های به روز CMIP5 و سناریوهای انتشار RCP8.5 و RCP2.6 است، استفاده شد. خروجی روزانه هفت مدل GCM انتخابیِ متناسب با منطقه برای دو دوره زمانی 2045-2065 و 2080-2100 با روش تصحیح خطای نگاشت هم فاصله تابع توزیع تجمعی EDCDFm تصحیح و سپس بکار­گیری شد. بیشترین افزایش دمای متوسط طی دوره رشد مربوط به سناریوی RCP8.5 در دوره 2080-2100 و رقم دیررس به مقدار 1/3 درجه سانتی­گراد خواهد بود. تاریخ مناسب کاشت برای تمام سناریوها در آینده نسب به دوره پایه دیرتر رخ داده و به اواخر پاییز منتقل می­شود. به علت افزایش متوسط دما طی دوره رشد مراحل گل­دهی و رسیدن زودتر رخ داده و درنتیجه متوسط طول دوره رشد برای تمام سناریوها در مقایسه با دوره پایه کوتاه­تر می­شود. متوسط مجموع تبخیر و تعرق محصول (ETc) طی دوره رشد در اکثر ایستگاه­ها کاهش می­یابد. با توجه به مطلوب­تر شدن کاهش نسبی عملکرد (YD) و تابش خورشیدی مؤثر طی دوره رشد برای اکثر ایستگاه­ها می­توان گفت که این شاخص­های عملکردی محصول نسبت به دوره پایه بهبود می­یابند. اما آنچه در این میان نامطلوب به نظر می­آید افزایش فراوانی وقوع پدیده­های نامطلوب نسبت به دوره پایه است و نکته نگران­کننده­تر افزایش احتمال وقوع حداقل یک، دو و سه پدیده نامطلوب طی دوره رشد است که می­تواند شرایط اقلیمی را به ضرر تولید گندم تغییر دهد. انتخاب یک رقم زودرس جهت کاشت در آینده در مقایسه با رقم­های دیررس و میان­رس، رقم مناسب­تری خواهد بود و می­تواند شرایط اقلیمی آینده را به نفع تولید گندم دیم در اکثر مناطق به­ویژه مناطق سردسیر تغییر دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Climate Change on Frequency of Adverse Weather Events during Wheat-Growing Season (Case Study: Main Areas of Rainfed Wheat Production in Iran)

نویسندگان [English]

  • Mojtaba Shokouhi 1
  • Seyed Hossein Sanaei-Nejad 1
  • Mohammad Bannayan Aval 2
1 Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction:
Adverse and extreme  agro climatic events will disrupt food production and these  changes are expected to increase in the world. The wheat is Iran's dominant diet, especially in the form of bread. It is important as a food product that has an impact on food security. Climate change can affect wheat production in major areas of rainfed wheat production in Iran, with social and economic consequences. Therefore, it is important for policy makers and scientists  to evaluate the effects of climate change on the agricultural sector and food security. Crop models cannot take into account the effects of severe weather events (such as heavy rainfall, heat stresses) on the final yield of the crop. It could be useful to  utilize  agro climatic indices to provide more comprehensive projections of the impact of climate change on  agro climatic conditions. The purpose of this study was  evaluating the  probability of occurrence of adverse and extreme  agro climatic events at different stages of wheat development using  agro climatic indices.
 
Materials and Methods:
 The focus of this study is on main areas of rainfed wheat production in Iran (Kurdistan, Kermanshah, Golestan, Zanjan, Hamedan, and Ardebil provinces). According to the latest statistics and information from the Ministry of Agricultural Jihad, more than 55% of wheat production  achieve in these areas. The evaluations are based on the outputs of seven CMIP5 models and RCP8.5 and RCO2.6 emission scenarios for the period 2045-2065 and 2080-2100.  The equidistant quintile-based mapping method (EDCDF) was applied to bias correct the outputs of CMIP5 models .The proposed method of Allen et al. (1998) was  utilized to estimate daily crop evapotranspiration, soil moisture and relative reduction in crop yield under soil water shortage to describe the major adverse conditions for wheat production;  the set of 13 indicators was used to cover the major causes of low yields of winter wheat.
 
Result and discussion:
 The average temperature during the growing season will be increased by 3.1 °C for the late cultivar and RCP8.5 scenario during the period 2080-2100 compared to the baseline. The appropriate sowing dates will occur later for all scenarios relative to the baseline and shift to late autumn. Due to the increased average temperature during the growth period, anthesis and maturity dates will occur earlier relative to the baseline and subsequently the average growth period for all scenarios is shorter than the baseline. Average total crop evapotranspiration (ETc) during the growing season will be reduced in most stations. The average relative reduction in crop yield (YD) and the average total effective solar radiation will be more favorable than the baseline.  Thus, it can be said that these crop yield indicators are better than the baseline. However, increasing frequency of adverse events will be undesirable and the most unsettling possibility is the increase in the likelihood of occurrence of at least one, two and three adverse events during the growing season that can be extremely unfavorable climatic conditions for the production of wheat. The close connection between the likelihood of adverse events  and the duration of growth period (such as moisture and heat stresses) is obvious so that the longer growth period,  is more likely to be exposed to high temperatures and moisture stresses. An early cultivar will be a more suitable cultivar for sowing compare to late and medium-ripening cultivar which can change future climate conditions in favor of rainfed wheat production in most areas, especially cold regions.
 
Conclusion:
 In this study, the probability of occurrence of adverse and extreme  agro climatic events during the growing season of wheat was determined, which is usually not well considered in crop models. However, it is well known that the impacts of such extreme events can be substantial. The results of this study showed that, despite high uncertainty in the climate projections within CMIP5 models, the probability of occurrence of at least one (or more) adverse event during the growth period for each cultivar will increase compared to the baseline for the same cultivar. So that, the longer growth period, the greater likelihood of occurrence of at least one (or more) adverse event.

کلیدواژه‌ها [English]

  • .Agro-climatic indices
  • CMIP5 models
  • EDCDF biases correction
  • Emission scenarios RCP
Ahmadi, K., Gholizadeh, H., Abedzadeh, H.R., Hossein Pour, R., Abdshah, H., Kazimian, A., and Maryam, R. 2017. Agricultural statistics of 2015-2016, volume i. ed. Ministry of Agriculture, Department of Planning and Economic Center for Information and Communication Technology. (In Persian)
Alexandrov, V., Mateescu, E., Mestre, A., Kepinska-Kasprzak, M., Stefano, V.D., and Dalezios, N. 2008. Summarizing a questionnaire on trends of agroclimatic indices and simulation model outputs in Europe, in: Cost Action. Pp: 115–161.
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. FAO irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations 56: e156.
Amirnejad, H., and Asadpour kordi, M. 2017. Effects of climate change on wheat production in Iran. Journal of Agricultural Economics Research 9: 163–182. (In Persian with English Summary)
Angulo, C., Rötter, R., Lock, R., Enders, A., Fronzek, S., and Ewert, F. 2013. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology 170: 32–46.
Lobell, D.B., and Asseng, S. 2017. Comparing estimates of climate change impacts from process-based and statistical crop models. Environmental Research Letters 12: 15001.
Dashti, G., Bagheri, P., Pishbahar, E., and Majnooni, A. 2018. The calculation of yield risk caused by climate change for rainfed wheat in Ahar county: weather value at risk approach application. Journal of Economics and Agricultural Development 32:139–153. (In Persian with English Summary)
Delavar, N., Akhavan, S., and Mehnatkesh, A. 2017. Climate change impact on some factors affecting rainfed wheat growth (Case study: Chaharmahal and Bakhtiari province). Journal of Water and Soil Science 21: 131–149. (In Persian with English Summary)
Delghandi, M., Broomandnasab, S., Andarzian, B. and Massah-Bovani, A. 2016. Adaptation strategies of wheat to climate change (case study: Ahvaz Region). Journal of Water and Soil 30, 300–311. (In Persian with English Summary)
Farshadi, S., Deihimfard, R., Noori, O., and Kambouzia, J. 2017. Impacts of increasing Co2 and temperature due to climate change on wheat yield in Khuzestan province: A simulation study. Iranian Journal of Field Crop Science 48: 749–761. (In Persian with English Summary)
Fernandez-Long, M.E., Müller, G.V., Beltran-Przekurat, A., and Scarpati, O.E. 2013. Long-term and recent changes in temperature-based agroclimatic indices in Argentina. International Journal of Climatology 33: 1673–1686.
Gourdji, S.M., Sibley, A.M., and Lobell, D.B. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters 8: 24041.
Hansen, J.W., and Jones, J.W. 2000. Scaling-up crop models for climate variability applications. Agricultural Systems 65, 43–72.
IPCC. 2014. Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.
IPCC. 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Koocheki, A., and Kamali, G. 2010. Climate change and rainfed wheat production in Iran. Iranian Journal of Field Crops Research 8: 508–520.
Koocheki, A., and Nassiri Mahallati, M. 2016. Climate change effects on agricultural production of Iran: ii. predicting productivity of field crops and adaptation strategies. Iranian Journal of Field Crops Research 14: 1–20. (In Persian with English Summary)
Kruijt, B., Witte, J.P.M., Jacobs, C.M.J., and Kroon, T. 2008. Effects of rising atmospheric co2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology 349: 257–267.
McMaster, G., and Wilhelm, W. 2003. Phenological responses of wheat and barley to water and temperature: improving simulation models. The Journal of Agricultural Science 141: 129–147.
Mohammadi, E., Yazdanpnah, H., and Mohammadi, F. 2014. Event of climate change, its impact on durum wheat planting and during the growing season case study: station of Sararood, Kermansha. Physical Geography Research Quarterly 26: 231–246. (In Persian with English Summary)
Moss, R.H., Edmonds, J.A, Hibbard, K. a, Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A, Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., and Wilbanks, T.J. 2010. The next generation of scenarios for climate change research and assessment. Nature 463: 747–56.
Olesen, J.E., Børgesen, C.D., Elsgaard, L., Palosuo, T., Rötter, R.P., Skjelvåg, a O., Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., Van Asselt, E.D., Oberforster, M., and Van Der Fels-Klerx, H.J. 2012. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 29: 1527–42.
Priya, S., and Shibasaki, R. 2001. National spatial crop yield simulation using GIS-based crop production model. Ecological Modelling 136: 113–129.
Rahimi, J., Khalili, A., and Bazrafshan, J. 2014. Estimation of effective precipitation for winter wheat in different regions of Iran using an Extended Soil-Water Balance Model. Desert 19: 91–98.
Rahmani, M., Jami Al-Ahmadi, M., Shahidi, A., and Hadizadeh Azghandi, M. 2016. Effects of climate change on length of growth stages and water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Case study: Birjand plain). Journal of Agroecology 7: 443–460. (In Persian with English Summary)
Reyer, C.P.O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R.P., Bonfante, A., De Lorenzi, F., Dury, M., Gloning, P., and Jaoude, R.A. 2013. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology 19: 75–89.
Rotter, R.P., Carter, T.R., Olesen, J.E., and Porter, J.R. 2011. Crop-climate models need an overhaul. Nature Clim. Change 1: 175–177.
Saadati, Z., Delbari, M., Panahi, M., Amiri, E., Rahimian, M., and Ghodsi, M. 2016. Evaluation of the effects of climate change on wheat growing period and evapotranspiration using the ceres-wheat model (Case study: Mashhad). Water and Soil Science 26: 67–79. (In Persian with English Summary)
Shokouhi, M., and Sanaei nejad, S.N. 2014. Determination of weather conditions associated with the production of rainfed barley crop (Case study: East Azerbaijan). Journal of Agroecology 6: 634–644. (In Persian with English Summary)
Shokouhi, M., Sanaei Nejad, S.N., and Bannayan Aval, M. 2018. Evaluation of simulations of precipitation and temperature from cmip5 climate models in regional climate change studies (case study: major rainfed wheat-production areas in Iran). Journal of Water and Soil 32: In Press. (In Persian with English Summary)
Sillmann, J., Kharin, V. V, Zhang, X., Zwiers, F.W., and Bronaugh, D. 2013. Climate extremes indices in the cmip5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres 118: 1716–1733.
Soleymani Nanadegani, M., Parsinejad, M., Araghinejad, S., and Massah Bavani, A. 2011. Study on climate change effect on net irrigation requirement and yield for rainfed wheat (case study: Behshahr). Journal of Water and Soil 25: 389–397. (In Persian with English Summary)
Taylor, K.E., Stouffer, R.J., and Meehl, G.A. 2012. An overview of cmip5 and the experiment design. Bulletin of the American Meteorological Society 93: 485–498.
Trnka, M., Rötter, R.P., Ruiz-Ramos, M., Kersebaum, K.C., Olesen, J.E., Žalud, Z. and Semenov, M.A. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change 4: 637–643.
Valipour, M. 2014. Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods. Water Resources Management 28: 4237–4255.
Yarmohammadi, S., Zakerinia, M., Ghorbani, K., and Soltani, A. 2018. Investigation of the effect of climate change on evapotranspiration and wheat water requirement in Bojnord region. Water Engineering 10: 97–110. (In Persian with English Summary)
Yazdanshenas, L., Moghadasi, R., and Yazdani, S. 2011. A model for the wheat market in Iran. International Journal of Agricultural Science and Research 2: 49–55.
CAPTCHA Image