ارزیابی اثرات زیست‌محیطی جو (Hordeum vulrare L.) آبی و دیم با استفاده از روش ارزیابی چرخه‌حیات (LCA)، (مطالعه موردی: شهرستان خرم‌آباد)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه زابل

2 گروه زراعت، دانشکده کشاورزی،دانشگاه زابل، زابل، ایران

3 دانشگاه بوعلی سیناهمدان

چکیده

این بررسی با هدف مقایسه آلاینده‏های جو (Hordeum vulrare L.) آبی و دیم در منطقه خرم‏آباد با استفاده از روش ارزیابی چرخه‌حیات انجام شد. واحد کارکردی در این پژوهش معادل تولید یک تن محصول جو در نظر گرفته شد. از اثرات زیست‌محیطی مهم می‏توان به گرمایش جهانی، تخریب لایه اوزون، پدیده اختناق دریاچه، پتانسیل اسیدی شدن و پتانسیل سمیت انسانی اشاره کرد. اندازه‏گیری پتانسیل هرکدام از اثرات زیست‌محیطی فوق‌الذکر با توجه به معادل تولید واحد در نظر گرفته شده توسط پایگاه داده جهانی محاسبه شد. نتایج نشان داد که میزان انتشار گازهای گلخانه‏ای در اثر زیست‌محیطی گرمایش جهانی در تولید یک تن جو آبی و دیم به‌ترتیب برابر ۰۶/۱۱۱۲ و ۹۶/۶۹۹ واحد معادل کیلوگرم تولید CO2 است. در اثر زیست‌محیطی تخریب لایه اوزون این مقدار برای تولید یک تن جو آبی و جو دیم به‌ترتیب برابر ۰۰۰۲۲۸/۰ و ۰۰۰۲۰۶/۰ واحد معادل کیلوگرم تولید CEC11 محاسبه شد. پتانسیل اختناق دریاچه در تولید یک تن جو آبی و دیم به‌ترتیب برابر ۶۶/۲ و ۷۱/۲ واحد معادل تولید کیلوگرم PO4 محاسبه شد. در طراحی یک سناریو بلندمدت برای ادامه روند تولید به‌صورت کنونی، افزایش آلاینده‏های زیست‌محیطی با توجه به انباشت آلاینده‏های سال‏های قبل افزایش پتانسیل تخریب‏های زیست‌محیطی را نشان داد. بیش‌ترین میزان شاخص نهایی زیست‌محیطی (Eco-X) به‌ترتیب مربوط به دو اثر زیست‌محیطی گرمایش جهانی 0163/0 در جو آبی، 0108/0 در جو دیم و اثر زیست‌محیطی سمیت آب‏های شیرین که در هر دو محصول 0144/0 به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

The Main Differences of Irrigated and Rainfed Barley (Hordeum vulrare L.) in Term of Pollutants Emissions in Khorramabad Using LCA

نویسندگان [English]

  • Shahin Hassani 1
  • Mahmood ramroudi 1
  • Mohammad Reza Asgharipour 2
  • Ebrahim Asghripour 3
1 Un. of Zabol
2 Faculty of Agriculture, University of Zabol
3 Bu-Ali sina University
چکیده [English]

Introduction
Expanding the global population and their requirement for water, food, and energy is a challenge that is compounded by increased pressure on natural resources. The decision on how and to what extent humans need to consume resources, requires precise and sophisticated scientific research and analysis. In this study, Life Cycle Assessment (LCA) methodology has been used. According to this method, it is possible to measure any performance of any given farm on the basis of the number of inputs that the farmer will provide to the plant and the outputs of it. To evaluate the effects of a production process, a goal and scope of the study should be explained, then it can be used to assess a life cycle inventory and to carry out an impact assessment. The goal of this study was to compare the environmental effects of irrigated and rainfed barley in Khorramabad.
Materials and Methods
The LCA includes the definition of the goal and scope, the analysis of the inventory, the impact assessment, and the interpretation of the results. The data was collected from farmers through questionnaires. The selection of impact assessments should reflect the comprehensive set of environmental issues associated with the product system under study, taking into account the goal and scope. The designed functional unit for the present study is to produce one ton of grain yield. SimaPro and ecoinvent-3 are used for LCA.
For investigating uncertainty and measuring random data, the Monte Carlo statistical method is used to prevent the exponential growth of data. To access the Monte Carlo method, the square or second power of geometric standard deviation must be estimated and it is indicated by the GSD2 method.
Results and Discussion
The great difference between irrigated and rainfed barley was due to inputs of electricity and irrigation. More energy consumption in irrigated crops resulted in higher yield at this condition. The amount of greenhouse gases (GHGs) emissions in producing one ton of irrigated and rainfed barley was equivalent to 1112.069 and 699.96 units per kg CO2 production, respectively. The potential for greenhouse gas emissions has been reported by researchers in irrigated and rainfed barley equivalent was to 898.24 and 604.66 units per kg CO2 production, respectively.
Nitrate and phosphate are essential for plant life, but increasing their concentration in the water body causes excessive growth of algae in freshwater. Further, this will reduce the amount of oxygen in the water and ultimately lead to the deterioration of the ecosystem. The potential of eutrophication in the current study in Khorramabad for one ton of irrigated and rainfed barley was equivalent to 2.66 and 2.71 units per kg po4 production, respectively. The highest emission associated with eutrophication has been reported in wheat farms using agricultural machinery.
Increasing mechanization and the use of fossil fuels contribute to increasing GHGs emissions. This problem will not affect impact assessment and in addition to increasing the potential of global warming. Therefore, any operation affects all environmental impacts and should be considered as a management solution to reduce them. The ozone destruction potential is represented by the reference of CFC-11 unit per kg production. A large number of emission factors associated with this environmental impact from the use of pesticides and herbicides during the agricultural process. CFCs are the most important substances that have the property of destroying the ozone layer (Guinee, 2002). In the present research, the difference in the potential for destruction of the ozone layer is evident in the production of irrigated barley and rainfall barley.
 Conclusion
The environmental impact assessment for the production of one ton of barley has been calculated, but production is important. In the present study, considering that environmental production and release of pollutants in rainfall barley is far less compared to rainfed. Therefore, according to the research findings, corrective management for the production of barley should be applied to both irrigated and rainfed barley. Managing the use of pesticides and fertilizers is important. Properly integrated management such as rotation can be successful in reducing the application of pesticides and fertilizer.

کلیدواژه‌ها [English]

  • life cycle assessment
  • Global warming
  • environmental degradation and long-term environmental impact design
Bare, J., Norris, O., Pennington, W., and Mckone, T., 2003. TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology 6: 49-78.
Brentrup, F., Kusters, J., Lammel, J., Barraclough, P., and Kuhlmann, H., 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application N fertilizer use in winter wheat production systems. European Journal of Agronomy 20: 265-279.
Brentrup, F., Küsters, J., Kuhlmann, H., Lammel, J., 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20(3): 247-264.
Ghasempour, A., 2016. Assessment of environment impact of egg production chain using life cycle assessment (LCA). Msc Dissertation. Faculty of agriculture, Bu-Ali sina university, Iran. (In Persian whit English Summary)
Guinee, J.B., 2002. Handbook on life cycle assessment operational guide to the ISO standards. The international Journal of Life Cycle Assessment 7: 311-313.
Hosainzade, J., Shorafa, S., and Dashti, G., 2010. Economic analysis of environmental pest management plans (in the fields of Khuzestan province). Journal Iranian Agricultural Economics and Development Research 2(3): 267-274.
McGregor, M., 2002. A primer in environmental life cycle (LCA) for Australian grains. Muresk institute of agriculture, published by curtin university of technology Northam. Western Australia 6401.
ISO 14044., 2006. Environmental management- Life cycle assessment- Requirements and Guidance. http://www.grida.no/climate/ipcc/regional/index.htm (verified 5 September 2007).
ISO (International Organization for Standardization)., 2000. Environmental management—life cycle assessment—life cycle impact assessment. International Standard ISO 14042:2000. ISO, Geneva.
Khorramdel, S., 2011. Evaluation of the potential of carbon sequestration and Life Cycle Assessment (LCA) approach in different management systems for corn. PhD Dissertation, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian with English Summary)
Khorramdel, S. Ghorbani, R., and Amin Ghafuri, A., 2015. Comparison of environmental impact for dryland and irrigated barley agroecosystems by using life cycle assessment (LCA) methodology. Journal Plant Production Research. 22(1): 243-264. (In Persian with English Summary).
McGregor, M., 2002. A primer in invironmental life cycle (LCA) for Australian grains. Muresk institute of agriculture, published by Curtin university of technology Northam. Western Australia 6401.
Mir Haji, H., Abbaspoor Fard, H., and Mahdavi Shahri, S.M., 2012. Study of environmental impact assessment of sugar beet production (Beta vulgaris L.) by using life cycle assessment methodology in Khorasan province. Journal of Agroecology 4(2): 112-120. (In Persian with English Summary)
Roux, P., 2014. Uncertainty in life cycle assessment and ecoinvent-memorandum. Available at website: http//www.ecounvent.com, verified 20 October 2014. (In French with English Summary)
Schlesinger, W.H., 1999. Carbon and agriculture: carbon sequestration in soil. Journal of Science 284(5423): 2095.
Simapro 8. 2017. Report version V3, language: English. Other information available at web site: http//SimaPro.com
Esmaielpoor, B., Khorramdel, S., and Amin Ghafuri, A., 2015. Study of environmental impact for potato agroecosystems of Iran by using life cycle assessment (LCA) methodology. Journal Plant Production Research 8(3): 199-224. (In Persian with English Summary)
Snedecor, G.W., and Cochran, W.G., 1989. Statistical Methods. Iowa State University Press.
Sonesson, U. Berlin, J., and Ziegler, F., 2010. Environmental assessment and management in the food industry, Woodhead Publishing Series in Food Science, Technology and Nutrition, Number 194.
Wang, M., and Wu, W., 2009. Life cycle assessment of the winter wheat-summer maize production system on the north china plain. International Journal of Sustainable Development and World Ecology 14(2): 157-161.
Watson, R.T., Zinyowera, M.C., and Moss, R.H., 2006. IPCC Special Report on The Regional Impacts of Climate Change. An Assessment of Vulnerability. Intergovernmental Panel on Climate Change. Available at Web site.
West, T.O., and Marland, G., 2002. A synthesis of carbon sequestration, carbon emission and net carbon flux in agriculture: comparing tillage practices in the United States. Journal of Agriculture, Ecosystems and Environment 91: 217-223.
WFLDB (World Food LCA Database). 2015. Methodological Guideline for the life cycle inventory of Agricultural products. Available on website: http://www.quantis-intl.com (15 July 2015).
CAPTCHA Image