ارزیابی پایداری عملکرد دانه لاین‌های امیدبخش گندم دوروم(Triticum turgidum L. var. durum) در مناطق معتدل ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

2 بخش تحقیقات غلات، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

4 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

مطالعه اثر متقابل ژنوتیپ× محیط و پایداری عملکرد دانه ارقام در شرایط محیطی مختلف از اهمیت ویژه‌ای در برنامه‌های به‌نژادی گندم (Triticum aestivum L.) برخوردار است. به‌منظور مطالعه سازگاری و پایداری لاین‌های امیدبخش گندم دوروم، آزمایشی با تعداد 18 لاین به‌همراه دو رقم شاهد (گندم دوروم هانا و نان پارسی) به مدت دوسال زراعی (96-1395 و 97-1396) در چهار ایستگاه تحقیقاتی (کرج، کرمانشاه، نیشابور و اصفهان) در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار انجام شد. نتایج تجزیه واریانس مرکب داده‌ها نشان داد که حدود 70 درصد از کل تغییرات مربوط به اثر محیط، 7/1 درصد مربوط به اثر ژنوتیپ و 5/13 درصد مربوط به اثر متقابل ژنوتیپ×محیط بود. بررسی بای‌پلات چندضلعی منجر به شناسایی ژنوتیپ‌های مناسب در هر مکان شد. محیط کرج به شرایط محیط‌ ایده‌آل نزدیک بود. بررسی همزمان پایداری و عملکرد ژنوتیپ‌ها با استفاده از بای‌پلات مختصات محیط متوسط نشان داد که ژنوتیپ‌های G2، G1 و G18 جزء ژنوتیپ‌های برتراز نظرعملکرد و پایداری بالا بودند. نتایج نشان داد که لاین G18 می‌تواند در قیاس با رقم شاهد هانا (G1) به عنوان لاین امیدبخش مطلوب از نظر عملکرد و پایداری در نظر گرفته شود و به عنوان لاین مناسب جهت معرفی در اقلیم معتدل کشور مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Grain Yield Stability of Durum Wheat (Triticum turgidum L. var. durum) Promising Lines in Moderate Regions of Iran

نویسندگان [English]

  • Ali Akbar Moayedi 1
  • Toohid Najafi Mirak 2
  • Majid Taherian 1
  • Shahryar Sasani 3
  • Davood Amin azarm 4
1 Department of Horticulture Crop Research , Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
2 Cereal Research Department, Seed and Plant Research Improvement Institute, AREEO, Karaj, Iran
3 Department of Horticulture Crop Research , Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
4 Department of Horticulture Crop Research , Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
چکیده [English]

Introduction
Durum wheat (Triticum turgidum L. var durum) consist of only 5% of the world’s total cultivated wheat area and contributes about 10% to the total global wheat production. Durum wheat in Iran is grown on 300-400 thousand hectares with an average annual production of 500-600 thousand tons. Similar to other crops, insufficient yield stability in durum wheat is recognized as a one of the factors responsible for the gap between actual yield and potential yield. In breeding programs, the identification of superior genotypes is difficult due to environmental variability of target locations and the interaction of these variabilities with the investigated genotypes. Therefore, it is important to evaluate the advanced agronomic lines across various environments and over multiple years to ensure their yield stability and production (Yan & Rajcan, 2002). Many statistical models have been suggested to analyze genotype (G)× environment (E) interaction. GGE (genotype plus genotype-by-environment) biplot method is a multivariate model, which is based on principal component analysis that simultaneously represents G, E and G×E interaction on a graph known as biplot. GGE biplot is widely used in agricultural research as it provides a simple graphical interpretation of G×E interaction. The aim of the study was to evaluate the grain yield stability and adaptability in some promising durum wheat lines grown in moderate regions of Iran.
Materials and Methods
Eighteen promising durum wheat lines (G1-G18) along with two control cultivars (durum wheat cv. Hana and bread wheat cv. Parsi), were investigated based on a randomized complete block with three replications for two cropping seasons (2016-2017 and 2017-2018) at four Agricultural Research Stations (including Karaj, Ahwaz, Kermanshah, Neishabour and Isfahan cities, Iran). Combined analysis of variance for grain yield was performed using ADEL-R software. The GGE biplot methodology was employed to analyze G×E interaction (Yan, 2001). The GGE biplot model was used for the following purposes; (i) evaluation of yield stability, (ii) the simultaneous selection for yield and stability, (iii) identification of ideal durum wheat genotypes, and (iv) assessment of the characteristics of and relationships among the testing environments.
Results and Discussion
About 70% of variation was related to environment, 1.7% to genotype and 13.5% to genotype× environment interaction. Overall the grain yield of the lines ranged from 6.57 to 7.26 t.ha-1 and the G20 and G2 lines had the lowest and highest grain yield, respectively. Also, G6 and G16 lines had higher yield than Dena cultivar (G1). Surveying Polygon of GGE biplot showed that genotypes G2, G16, G5, G4, G20, G8 and G6 which had the most distance from Bipolt center and located in Polygon vertices that they were premier genotypes. The lines which designed from Biplot center divided the shape of Polygon to four environments. The first environment was included into the Isfahan in which genotype G6 had the most performance. The second environment was included into the Karaj that G2 was premier genotypes of this environment. The third environment was included into Kermanshah that genotype G16 was high performance genotype in this environment. The fourth environment was included into the Neishabour in which genotype G20 was premier genotype. The G12, G3, and G10 genotypes, which were located near the center of the biplot, had performance in all environments. Simultaneous evaluation of grain yield and stability through environment coordinate (AEC) biplot showed that genotypes G2, G1 and G18 with the higher grain yield were the most stable genotypes. There were many similarities between Karaj and Kermanshah environments as well as Karaj and Isfahan. The angles between these two environmental groups were less than 90 degrees. In contrast, the angle between Neishabour environment and Kermanshah and Karaj environments was distorted and near 180 degrees. These results verified the Karaj station was close to the ideal environment. G2 and G16 genotypes were identified as favorable genotypes in Karaj environment.
Conclusion
GGE Biplot was an appropriate graphical method for simultaneous selection of performance and stability of cultivars and lines. Based on the results, genotype G6 in Karaj, G6 in Isfahan and G20 in Neishabour were the best genotypes in terms of yield and stability. Generally, G18 can be considered as a favorite promising line compared to the control cultivar Hana and as a candidate in the temperate climates.

کلیدواژه‌ها [English]

  • Genotype × Environment Interaction
  • GGE biplot
  • Sustainability
  • Superior Genotype
1- Ahmadi, J., Mohammadi, A., and Najafi Mirak, T., 2012. Targeting promising bread wheat (Triticum aestivum L.) lines for cold climate growing environments using AMMI and SREG GGE biplot analyses. Journal of Agricultural Science and Technology 14: 645-657.
2- Allard, R.W., and Bradshaw, A.D., 1964. Implication of genotype–environmental interaction in applied plant breeding. Crop Science 5: 503-506.
3- Becker, H.C., and Leon, J., 1988. Stability analysis in plant breeding. Plant Breeding 101:1-23.
4- Blanche, S.B., and Myers, G.O., 2006. Identifying discriminating locations for cultivar selection in Louisiana. Crop Science 46: 946-949.
5- Dimitrios, B., Christos, G., Jesus, R., and Eva, B., 2008. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE Biplots. Agronomy Journal 100: 1230–1236.
6- Fan, X.M., Kang, M.S. Chen, H., Zhang, Y., Tan, J., and Xu, C., 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal 99: 220-228.
7- Farshadfar, E., Rashidi, M., Jokar, M.M., and Zali, H., 2013. GGE biplot analysis of genotype × environment interaction in chickpea genotypes. European Journal of Experimental Biology 3(1): 417-423.
8- Gabriel, K.R., 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453–467.
9- Mohammadi, R., and Amri, A., 2013. Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica 192: 227-249.
10- Mohammadi, R., Armion, M., Sadeghzadeh, B., Golkari, S., Khalilzadeh, G., Ahmadi, H., Abedi-Asl, G., and Eskandari, M., 2016a. Assessment of grain yield stability and adaptability of rainfed durum wheat breeding lines. Applied Field Crops Research 29(4): 25-42. (In Persian with English Summary)
11- Mohammadi, M., Hosseinpour, T., Armion, M., Khanzadeh, H., and Ghojogh, H., 2016b. Analysis of genotype, environment and genotype × environment interaction in bread wheat genotypes using GGE biplot. Agricultural Communications 4(3): 1-8.
12- Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., and Zali, H., 2019. Evaluation of durum wheat cultivars and promising lines for yield and yield stability in warm and dry areas using AMMI model and GGE Biplot. Journal of Crop Breeding 10(28): 1-12. (In Persian with English Summary)
13- Omrani, S., Mohammad Naji, A., and Esmaeilzadeh Moghaddam, M., 2017. Yield stability analysis of promising bread wheat lines in southern warm and dry agroclimatic zone of Iran using GGE biplot model. Journal of Crop Breeding 23(9): 157-165.
14- Pourdad, S.S., and Jamshid Moghaddam, M., 2013. Study on genotype× environment interaction through GGE biplot for seed yield in spring rapeseed (Brassica napus L.) in rain-fed condition. Journal of Crop Breeding 5 (12): 1-14. (In Persian with English Summary)
15- Rose, I.V.L.W., Das, M.K., and Taliaferro, C.M., 2008. A comparison of dry matter yield stability assessment methods for small numbers of genotypes of bermudagrass. Euphytica 164: 19-25.
16- Samonte, S.O.P.B., Wilson, L.T., McClung, A.M., and Medley, J.C., 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Science 45: 2414-2424.
17- Yan, W., 2001. GGE biplot–A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal 93: 1111-1118.
18- Yan, W., and Kang, M.S., 2003. GGE Biplot Analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL.
19- Yan, W., and Rajcan I., 2002. Biplot analysis of sites and trait relations of soybean in Ontario. Crop Science 42: 11-20.
20- Yan, W., and Tinker, N.A., 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86: 623-645.
21- Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z., 2000. Genotype evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40: 597-605.
22- Zali, H., Sofalian, O., Hasanloo, T., and Asghari, A., 2016. Evaluation of yield stability and drought tolerance based AMMI and GGE biplot analysis in Brassica napus L. Agricultural Communications 4(1): 1-8.
CAPTCHA Image