شبیه‌سازی رطوبت خاک برای دوره آتی به‌کمک مدل SWAPبا استفاده از مدل‌ها و سناریوهای گزارش پنجم تغییر اقلیم (مطالعه موردی: مزرعه گندم (Triticum aestivum L.) فاروب نیشابور)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب ،دانشکده کشاورزی دانشگاه بیرجند، بیرجند، ایران.

2 گروه علوم و مهندسی آب دانشکده کشاورزی دانشگاه بیرجند، بیرجند، ایران.

3 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی همدان، سازمان تحقیقات آموزش و ترویج کشاورزی، همدان، ایران

4 گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه بیرجند، بیرجند، ایران.

چکیده

افزایش گازهای گلخانه‌ای در دوره‌های آتی و در نتیجه، تشدید تغییرات پارامترهای اقلیمی، می‌تواند تأثیرات منفی زیادی را بر سیستم‌های مختلف از جمله منابع آب، محیط زیست، صنعت، بهداشت، کشاورزی و کلیه بخش‌های مرتبط با سیستم اقلیم بگذارد. لذا در این تحقیق برای شبیه‌سازی رطوبت ظرفیت زراعی خاک در دوره آتی (2039-2020) نسبت به دوره پایه (2011-1992) از مزرعه گندم (Triticum aestivum L.) فاروب واقع در دشت نیشابور استفاده شد. داده‌های اقلیمی به­کمک شش مدل GCM و دو سناریو انتشار 5/4 و 5/8 برآورد گردید و به­کمک مدل LARS-WG ریزمقیاس شد و وارد مدل SWAP گردید. همچنین به‌منظور ارزیابی و دقت مدل SWAP از معیارهای آماری RMSE، MAE و R2 استفاده شد. نتایج تغییرات پارامترهای اقلیمی نشان داد، دمای حداقل، حداکثر و بارش در دوره آتی نسبت به دوره پایه افزایش یافته است و سناریو 5/8 نسبت به سناریو 5/4، دمای بیشتر و بارش کمتری را برآورد کرده است. همچنین رطوبت خاک در دوره آتی نسبت به دوره پایه برای هر دو سناریو کاهش یافته است. بررسی دامنه تغییرات مدل‌های GCM نشان داد، برای رطوبت هفتگی تحت هر دو سناریو، مدل  CanESM2و برای رطوبت سالیانه تحت سناریوهای 5/4 و 5/8، به‌ترتیب مدل‌های‌ MIROC و‌ IPSL دارای بیشترین قطعیت نسبت به سایر مدل‌ها می‌باشند. از طرفی، بررسی دامنه تغییرات سناریوهای انتشار نشان داد، رطوبت هفتگی و سالیانه، به‌ترتیب از کمترین و بیشترین قطعیت نسبت به دوره پایه برخوردار هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Soil Moisture for the Upcoming Period by SWAP Model using Climate Change Models and Fifth Report Scenarios (Case Study: Wheat (Triticum aestivum L.) Field in Faroub of Neyshabour)

نویسندگان [English]

  • Saeid Ghavam Saeidi Noghabi 1
  • Mostafa Yaghoobzadeh 2
  • Hamed Mansoori 3
  • Hossein Hammami 4
  • Mokhtar Salehi tabas 2
  • Mohammad Hossein Najafi Mood 2
1 Department of Science and Water Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran
2 Department of Science and Water Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran
3 Sugar Beet Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
4 Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Birjand, Birjand, Iran
چکیده [English]

Introduction
Climate change is one of the major challenges which society will face during current century. Temperatures are projected to increase up to 2 ºC by 2100, which is expected to result in major changes in the atmosphere’s energy balance and the hydrological cycle. The term soil moisture generally refers to temporary storage of precipitation at a depth of 1 to 2 meters from the soil profile). Soil moisture in the root zone well known as a very important factors that severely effects on crop productivity. Hence, the study of soil moisture changes is crucial for the planning and managing water resources in the coming periods. Accordingly, this study was conducted in order to predict and stimulate soil moisture in upcoming period (2020-2039) according to baseline (1992-2011).
Materials and Methods
The study area in this research was Neyshabour plain located in Khorasan Razavi province. At first, SWAP model implemented using meteorological and agronomic data from study area, and soil moisture of field capacity is simulated for 30 cm soil depth. Then, to ensure the results of moisture simulation, the moisture content of the model is calibrated and validated using the measured soil moisture content of the 2008-2009. After ensuring the accuracy of the model results, soil moisture is simulated for the baseline (1992-2011). Then, to estimate moisture content in the upcoming period (2020-2039) six models (CanESM2, GFDL, MIROC, IPSL, CSIROMK3.6, and GISS-ES-R) and two emotion scenarios (RCP4.5 and 8.5) were used, as well as the ratio of the weekly and yearly values of the meteorological parameters of the upcoming period, which estimated using the baseline. In addition, to evaluate SWAP model accuracy, Root Mean-Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2) were used. Data obtained by Neyshabur Synoptic Station (1992-2011) were utilized in order to determine daily weather patterns and future weather parameters. Temperature and precipitation parameters determined by the LARS-WG model.
Results and Discussion
In order to use the SWAP simulated moisture, initially the model calibrated and validated with measured soil moisture data from 2008-2009 growth season. So, after soil moisture simulation for 2008-2009, the measured data by TDR used for calibration and validation model. The coefficient of determination factor (R2) between simulated and measured results was 79.5%. The climate parameters used in this study include minimum and maximum temperatures and precipitation, which are known as the most important factors affecting the soil moisture. According to table 6, the minimum and maximum temperatures and precipitation for the upcoming period will increase compared to the baseline. On the other hand, According to table 9 and table 10, under two scenarios, the means, maximum and minimum soil moisture decrease compared to baseline. The weekly and yearly uncertainty in soil moisture under two scenarios showed in figures 4 and 5, respectively. Under the 4.5 scenario, the MIROC model due to the lower band thickness and the IPSL model, due to the higher bandwidth thickness, have the highest and lowest accuracy, respectively. Whereas, under the 8.5 scenario, the IPSL model has the highest accuracy and the CanESM2 and GISS-ES-R models have the lowest accuracy compared to other models. Results of weekly and yearly uncertainty showed less and more uncertainty for weekly and yearly soil moisture, respectively.
Conclusions
In general, results of this study revealed that minimum, maximum temperature and precipitation will increase in upcoming period compared to baseline. Soil moisture decrease in upcoming period compared to baseline under two scenarios (4.5 and 8.5). Moreover, temperature was higher and precipitation was lower under 8.5 scenario rather than 4.5 scenario. Therefore, 8.5 scenario showed worse condition compared to 4.5 scenario. Results of this study showed lower soil moisture in 1, 3, 6, 13, 18, and 19 years in upcoming period under two scenarios. Therefore, these years known as warning condition compared to baseline.
 

کلیدواژه‌ها [English]

  • Climate change
  • Emotion scenarios
  • GCM model
  • SWAP model
Adhikari, U., and Nejadhashemi, A.P., 2016. Impacts of climate change on water resources in Malawi. Journal of Hydrologic Engineering 21(11): 1084-0699.
Dehghan, H., Alizadeh, A., and Haghayeghi, S.A., 2011. Water balance components estimating in farm Scale Using Simulation Model SWAP. Journal of Water and Soil 24(6): 1265-1275. (In Persian with English Summary)
Hauser, M., and Orth, R., 2017. Investigating soil moisture-climate interactions with prescribed soil moisture experiments: An assessment with the Community Earth System Model. Geoscientific Model Development 10(4): 1665-1677.
Hosseinzadeh, J., Tongo, A., Najafifar, A., and Hosseini, A., 2018. Relationship between soil moisture changes and climatic indices in the Mele-Siah Forest Site of Ilam province. Journal of Water and Soil 32(4): 821-830. (In Persian with English Summary)
Khanmohammadi, F., Homaee, M., and Noroozi, A., 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Soil and Water Resources Conservation 4(2): 37-45. (In Persian with English Summary)
Khoshhal Dastjerdi, J., Mostafavi Darani, S.M., and Ghatre Samani, M., 2010. Effects of changes on soil moisture in wheat cultivar (Case study: Daran-Isfahan province). The First International Conference on Plant, Water, Soil and Weather Modeling, Shahid Bahonar University of Kerman, Iran, 14-15 November 2010. (In Persian with English Summary)
Nahvinia, M.J., Moaveni, B., and Shahidi, A., 2018. Assessment of SWAP Model in estimating the slinity and soil moisture content (Case study: Birjand). Iranian Journal of Irrigation and Drainage 12(5): 1174-1188. (In Persian with English Summary)
Narasimhan, B., and Srinivasan, R., 2005. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology 133(1-4): 69-88.
Parry, M.L., Canziani, O.F., Palutikof, J.P., Van Der Linden, P.J., and Hanson, C.E., 2007. IPCC, 2007: climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Uni-versity Press, Cambridge, UK.
Ruane, A.C., Cecil, L.D., Horton, R.M., Gordon, R., McCollum, R., Brown, D., Killough, B., Goldberg, R., Greeley, A.P., and Rosenzweig, C., 2013. Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agricultural and Forest Meteorology 170: 132-145.
Sayari, N., Bannayan, M., Alizadeh, A., and Farid, A., 2013. Using drought indices to assess climate change impacts on drought conditions in the northeast of Iran (Case study: Kashafrood basin). Meteorological Applications 20(1): 115-127.
Semenov, M.A., 2008. Impacts of climate change on wheat in England and Wales. Journal of the Royal Society Interface 6(33): 343-350.
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., and Midgley, B.M., 2013. IPCC, 2013: climate change 2013: The physical science basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change.
Tavakoli, M., and De Smedt, F., 2011. Impact of climate change on streamflow and soil moisture in the Vermilion Basin, Illinois. Journal of Hydrologic Engineering 17(10): 1059-1070.
Van Pelt, S.C., and Swart, R.J., 2011. Climate change risk management in transnational river basins: the Rhine. Water Resources Management 25(14): 3837-3861.
Winter, J.M., Yeh, P.J.F., Fu, X., and Eltahir, E.A.B., 2015. Uncertainty in modeled and observed climate change impacts on American Midwest hydrology. Water Resource Research 51(5): 3635-3646.
Yaghoobzadeh, M., Amirabadizadeh, M., Ramezani, Y., and Pourreza-Bilondi, M., 2018. An uncertainty analysis of general circulation models for estimation of soil moisture affected by climate change. Iranian Jornal of Soil and Water Research 48(5): 1109-1119. (In Persian with English Summary)
Yaghoobzadeh, M., Amirabadizadeh, M., Ramezani, Y., and Pourreza-bilondi, M., 2017. The investigation of uncertainty emissions scenarios of climate change in soil moisture estimation during the growing season of wheat. Iranian Journal of Irrigation and Drainage 11(4): 586-596. (In Persian with English Summary)
CAPTCHA Image