##plugins.themes.bootstrap3.article.main##

سید مجید عالیمقام افشین سلطانی وینست وادز ابراهیم زینلی اسکندر زند

چکیده

اصلاح ارقام جدید در جهت افزایش عملکرد در واحد سطح همواره یکی از راهکارهای افزایش تولید محصولات کشاورزی بوده است. شناسایی صفات گیاهی تأثیرگذار بر عملکرد می‏تواند روند اصلاح ارقام جدید را تسریع بخشد. هدف از این مطالعه، شناسایی صفات گیاهی کلیدی در جهت افزایش عملکرد گندم آبی (Triticum aestivum L.) در مناطق تولید گندم در سراسر ایران بود. این مطالعه به‌کمک شبیه‏سازی تأثیر صفات مختلف گیاهی بر عملکرد پتانسیل گندم آبی، توسط مدل SSM-Wheat برای شرایط اقلیم کنونی و آینده انجام شد. برای این منظور از پروتکل پروژه اطلس خلأ عملکرد، موسوم به پروتکل گیگا، در جهت شناسایی پهنه‏های اقلیمی و همچنین شناسایی ایستگاه‏های هواشناسی مهم واقع در مناطق تولید گندم آبی در کشور استفاده شد. برای پیش‏بینی شرایط اقلیم آینده از روش دلتا و سناریوی انتشار RCP4.5 برای سال 2055 استفاده شد. در این مطالعه اثر کاهش و افزایش طول دوره شروع پنجه‏دهی تا شروع ساقه رفتن، طول دوره پر شدن دانه، کارایی استفاده از تشعشع و توسعه سطح برگ بر عملکرد پتانسیل گندم آبی بررسی شد. میزان تأثیر افزایش طول دوره پر شدن دانه به‌عنوان صفت کلیدی بر عملکرد پتانسیل برای اقلیم کنونی 3/15 درصد و برای اقلیم آینده 8/16 درصد بود. افزایش کارایی استفاده از تشعشع در سطح کشور باعث افزایش 7/14 درصدی عملکرد برای اقلیم کنونی و 7/13 درصد برای اقلیم آینده شد. اثر افزایش کارایی استفاده از تشعشع بر عملکرد پتانسیل، در مناطق گرم (GDD>6000) بیشتر از مناطق خنک بود. افزایش طول دوره شروع پنجه‏زنی تا شروع ساقه رفتن، صفتی بود که فقط در مناطق گرم منجر به افزایش عملکرد شد و اثر آن در مناطق خنک یا ناچیز بود و یا کاهش عملکرد پتانسیل را در پی داشت. نتایج این مطالعه می‏تواند در انتخاب صفات کلیدی برای افزایش عملکرد و تسریع تولید ارقام پرمحصول در مناطق مختلف گندم آبی به کار گرفته شوند.

جزئیات مقاله

کلمات کلیدی

پروتکل گیگا, دیررسی, ژنوتیپ, کارایی استفاده از تشعشع, محیط, مدل SSM-Wheat

مراجع
Anderson, W.K., 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research 116: 14-22.
Chmielewski, F.M., Müller, A., and Bruns, E., 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology 121: 69-78.
Christensen, J.H., Krishna Kumar, K., Aldrian, E., An, S.I., Cavalcanti, I.F.A., de Castro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J.K., Kitoh, A., Kossin, J., Lau, N.C., Renwick, J., Stephenson, D.B., Xie, S.P., and Zhou, T., 2013. Climate Phenomena and their Relevance for Future Regional Climate Change. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., (Eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Christopher, J.T., Manschadi, A.M., Hammer, G.L., and Borrell, A.K., 2008. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Australian Journal of Agricultural Research 59: 354-364.
Espe, M.B., Cassman, K.G., Yang, H., Guilpart, N., Grassini, P., Van Wart, J., Anders, M., Beighley, D., Harrell, D., Linscombe, S., and McKenzie, K., 2016. Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Research 196: 276-283.
Farshi, A., 1998. Water requirements estimation for major agronomic and horticultural plants of Iran. Irans’s Ministry of Agriculture of Iran Agriculture Education Press, Iran. (In Persian)
Fiorani, F., and Schurr, U., 2013. Future scenarios for plant phenotyping. Annual Review of Plant Biology 64: 267-291.
Fletcher, A.L., and Jamieson, P.D., 2009. Causes of variation in the rate of increase of wheat harvest index. Field Crops Research 113: 268-273.
Flohr, B.M., Hunt, J.R., Kirkegaard, J.A., Evans, J.R., Trevaskis, B., Zwart, A., Swan, A., Fletcher, A.L., and Rheinheimer, B., 2018. Fast winter wheat phenology can stabilise flowering date and maximize grain yield in semi-arid mediterranean and temperate environments. Field Crops Research 223: 12-25.
Ghanem, M.E., Marrou, H., and Sinclair, T.R., 2015. Physiological phenotyping of plants for crop improvement. Trends in Plant Science 20: 139-144.
Hammer, G.L., van Oosterom, E., McLean, G., Chapman, S.C., Broad, I., Harland, P., and Muchow, R.C., 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany 61: 2185-2202.
Hanson, J.D., 1982. Effect of light, temperature and water stress on net photosynthesis in two populations of honey mesquite. Journal of Range Management 455-458.
Hossain, M.A., Araki, H., and Takahashi, T., 2011. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan. Field Crops Research 123: 100-108.
Koo, J., and Dimes, J., 2010. Generic Soil Profiles for Crop Modeling Applications (HC27). International Food Policy Research Institute, Washington, DC, and University of Minnesota, St. Paul, MN. Available online at http://harvestchoice.org/node/662.
Liu, B., Chen, X., Meng, Q., Yang, H., and van Wart, J., 2017. Estimating maize yield potential and yield gap with agro-climatic zones in China—Distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology 239: 108-117.
Lollato, R.P., Patrignani, A., Ochsner, T.E., and Edwards, J.T., 2016. Prediction of plant available water at sowing for winter wheat in the southern great plains. Agronomy Journal 108: 745-757.
Martre, P., Quilot-Turion, B., Luquet, D., Memmah, M.M.O.S., Chenu, K., and Debaeke, P., 2015. Model-assisted phenotyping and ideotype design. In: V.O. Sadras, and D.F. Calderini, (Eds.) Crop physiology application for genetic improvement and agronomy. Academic Press/Elsevier Science.
Moeller, C., and Rebetzke, G., 2017. Performance of spring wheat lines near-isogenic for the reduced-tillering ‘tin’trait across a wide range of water-stress environment-types. Field Crops Research 200: 98-113.
Monpara, B.A., 2011. Grain filling period as a measure of yield improvement in bread wheat. Crop Improvement 38: 1-5.
Morison, J.I., 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment 8: 467-474.
Ramirez-Villegas, J., and Challinor, A., 2012. Assessing relevant climate data for agricultural applications. Agricultural and Forest Meteorology 161: 26-45.
Reynolds, M., Bonnett, D., Chapman, S.C., Furbank, R.T., Manes, Y., Mather, D.E., and Parry, M.A., 2010. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany 62: 439-452.
Reynolds, M.P., Calderini, D., Condon, A., and Vargas, M., 2007. Association of source/sink traits with yield, biomass and radiation use efficiency among random sister lines from three wheat crosses in a high-yield environment. Journal of Agricultural Science 145: 3-16.
Ribeiro, R.V., Machado, E.C., and Oliveira, R.F.D., 2006. Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition. Ciência e Agrotecnologia 30: 670-678.
Richards, R.A., 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51: 447-458.
Salehi, F., 2012. Desired Food Basket for Iranian People. 2012. Andisheh Mandegar Press, Iran. 58 p. (In Persian)
Sinclair, T.R., 2011. Challenges in breeding for yield increase for drought. Trends in Plant Science 16: 289-293.
Sinclair, T.R., Messina, C.D., Beatty, A., and Samples, M., 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal 102: 475-482.
Soltani, A., and Galeshi, S., 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Research 77: 17-30.
Soltani, A., Maddah, V., and Sinclair, T.R., 2013. SSM-Wheat: a simulation model for wheat development, growth and yield. International Journal of Plant Production 7: 711-740.
Soltani, A., and Sinclair, T.R., 2012 a. Identifying plant traits to increase chickpea yield in water-limited environments. Field Crops Research 133: 186-196.
Soltani, A., and Sinclair, T.R., 2012 b. Optimizing chickpea phenology to available water under current and future climates. European Journal of Agronomy 38: 22-31.
Soltani, A., and Sinclair, T.R., 2012 c. Modeling physiology of crop development, growth and yield. CABI Press. 322 p.
Soltani, A., and Sinclair, T.R., 2015. A comparison of four wheat models with respect to robustness and transparency: simulation in a temperate, sub-humid environment. Field Crops Research 175: 37-46.
Spano, G., Di Fonzo, N., Perrotta, C., Platani, C., Ronga, G., Lawlor, D.W., Napier, J.A., and Shewry, P.R., 2003. Physiological characterization of ‘stay green’mutants in durum wheat. Journal of Experimental Botany 54: 1415-1420.
Sultana, H., Ali, N., Iqbal, M.M., and Khan, A.M., 2009. Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Climatic Change 94: 123-142.
Tao, F., and Zhang, Z., 2013. Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology 170: 146-165.
van Bussel, L.G., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Cassman, K.G., and van Ittersum, M.K., 2015. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research 177: 98-108.
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., and Rose, S.K., 2011. The representative concentration pathways: An overview. Climatic Change 109: 5–3.
Wang, B., Li Liu, D., Asseng, S., Macadam, I., and Yu, Q., 2017 b. Modelling wheat yield change under CO2 increase, heat and water stress in relation to plant available water capacity in eastern Australia. European Journal of Agronomy 90: 152-161.
Wang, B., Li Liu, D., Asseng, S., Macadam, I., Yang, X., and Yu, Q., 2017 a. Spatiotemporal changes in wheat phenology, yield and water use efficiency under the CMIP5 multimodel ensemble projections in eastern Australia. Climate Research 72: 83-99.
Weigand, C., and Analyst, M., 2011. Wheat import projections towards 2050. US Wheat Associates, USA.
Willenbockel, D., 2011. Exploring food price scenarios towards 2030 with a global multi-region model. Oxfam Policy and Practice: Agriculture, Food and Land 11: 19-62.
www.dssat.net. Available at 2018/08/23.
www.esrl.noaa.gov/gmd/ccgg/trends. Available at 2018/08/23.
www.fao.org/faostat/en/#data/OA. Available at 2018/08/23.
www.yieldgap.org. Available at 2018/08/23.
www.yieldgap.org/web/guest/cz-ted. Available at 2018/08/23.
Yang, W., Peng, S., Dionisio-Sese, M.L., Laza, R.C., and Visperas, R.M., 2008. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Research 105: 221-227.
ارجاع به مقاله
عالیمقامس. م., سلطانیا., وادزو., زینلیا., & زندا. (2020). عملکرد پتانسیل گندم آبی (Triticum aestivum L.) و تأثیر صفات گیاهی بر آن در شرایط اقلیم کنونی و آینده در سراسر ایران. بوم شناسی کشاورزی, 12(3), 413-431. https://doi.org/10.22067/jag.v12i3.75590
نوع مقاله
علمی - پژوهشی