ارزیابی خصوصیات اکوفیزیولوژیکی در کشت مخلوط ردیفی بزرک (Linum usitatissimum L.) و نخود (Cicer arietinum L.) تحت تأثیر منابع کودی در شرایط دیم

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ایران.

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ایران

چکیده

به­منظور بررسی اثر مدیریت تلفیقی حاصلخیزی و الگوی کاشت بر عملکرد کمی و کیفی نخود (Cicer arietinum L.) و بزرک (Linum usitatissimum L.) در شرایط دیم، آزمایشی به­صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی با سه تکرار درسال زراعی 96-1395 در مزرعه‌ای واقع در استان آذربایجان غربی- شهرستان نقده به‌اجرا در آمد. عامل الگوی کاشت در شش سطح شامل: کشت خالص نخود، کشت خالص بزرک، کشت مخلوط جایگزین با نسبت یک ردیف بزرک و یک ردیف نخود، کشت مخلوط ردیفی با نسبت دو ردیف بزرک و دو ردیف نخود، کشت مخلوط ردیفی با نسبت دو ردیف بزرک و چهار ردیف نخود، کشت مخلوط ردیفی با نسبت چهار ردیف بزرک و دو ردیف نخود، وکود در چهار سطح شامل: عدم کاربرد کود (شاهد)، 100% کود شیمیایی (دارای NPK)، کود زیستی (فسفاته بارور 2 + ازتو بارور 1 + پتا بارو2 + سولفوبارور -۱) و ورمی­کمپوست (10 تن در هکتار) بود. صفات مورد مطالعه برای گیاه نخود و بزرک شامل کلروفیل a، کلروفیل b، کاروتنوئید، پرولین، قندهای محلول، نیتروژن، فسفر و پتاسیم، زیست‌توده‌‌ میکروبی خاک و تنفس میکروبی خاک بود. نتایج نشان داد که بیشترین مقدار کلروفیل a (93/2 میلی‌گرم در گرم وزن تر برگ)، میزان کلروفیل b  (59/1 میلی‌گرم بر گرم وزن تر برگ) و کاروتنوئید (59/1 میلی‌گرم بر گرم وزن تر برگ) نخود به‌ترتیب از تیمار یک ردیف نخود + یک ردیف بزرک و کشت چهار ردیف نخود + دو ردیف بزرک به‌دست آمد، امّا بیشترین مقدار کلروفیل a (57/2 میلی‌گرم در گرم وزن تر برگ) بزرک از کشت مخلوط دو ردیف نخود + دو ردیف بزرک، کلروفیل b (41/1 میلی‌گرم در گرم وزن تر برگ) و کاروتنوئید (39/1 میلی‌گرم در گرم وزن تر برگ) بزرک مربوط به الگوی کشت چهار ردیف نخود + دو ردیف بزرک و کمترین مقدار از کشت خالص به­دست آمد. میزان پرولین و قندهای محلول در کشت خالص بالاتر از کشت مخلوط مشاهده گردید. در بین تیمارهای کودی بیشترین میزان رنگیزه‌های فتوسنتزی هر دو گونه نخود و بزرک از تیمار ورمی­کمپوست و کمترین میزان پرولین و قندهای محلول از عدم مصرف کود حاصل شد. بیشترین درصد نیتروژن، فسفر و پتاسیم دانه هر دو گونه نخود و بزرک در کشت مخلوط بالاتر از کشت خالص بود. در بین تیمارهای کودی، بیشترین درصد نیتروژن، فسفر و پتاسیم دانه هر دو گونه از کود ورمی‌کمپوست به‌دست آمد. همچنین، استفاده از کشت مخلوط منجر به افزایش تنفس و زیست‌توده‌‌ میکروبی خاک گردید. نتایج به­دست آمده از این آزمایش نشان داد که استفاده از الگوهای مختلف کشت مخلوط و منابع کودی به‌خصوص ورمی­کمپوست توانست اثرات منفی کمبود آب در شرایط دیم را کاهش و فعالیت­های بیولوژی خاک را افزایش دهد که می‌تواند به نوبه خود موجب بهبود چرخش عناصر غذایی و حاصلخیزی خاک گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Ecophysiological Characteristics of Row Intercropped Linseed (Linum usitatissimum L.) with Chickpea (Cicer arietinum L.) affected as Fertilizer Sources under Dryland Conditions

نویسندگان [English]

  • Soheila Asadi 1
  • Esmaeil Rezaei-Chiyaneh 1
  • Reza Amirnia 2
1 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran,
2 Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Urmia University, Iran.
چکیده [English]

Introduction
The use of organic fertilizers such as vermicompost is a major component of organic farming practices. Vermicompost can provide the essential plant nutrients and enhance crop productivity, but also leave a beneficial residual effect on succeeding crops. Intercropping is the cultivation of two or more crops in such a way that they interact agronomically. Intercropping legumes with non-legumes is particularly important in organic farming because it enhances yield stability, concentrations and uptake of nutrients and on the other hand reduces disease and weed pressure. There is no information available about the effects of fertilizer source in intercropping system on the ecophysiological characteristics of linseed and chickpea in dry conditions. Therefore, the purpose of the present study was to contribute to a better understanding of the eco-physiology responses of linseed and chickpea plants to fertilizer source and cropping pattern.
Materials and Methods
The field experiments were conducted at Agricultural Experimental in a farm located in Naqadeh, West Azerbaijan, Iran (longitude 45°24' E, latitude 38°52' N, altitude 1318 m) in 2017. The first factor included six cropping patterns consist of 1 row chickpea + 1 row lineseed, 2 rows chickpea + 2 rows linseed, 4 rows chickpea + 2 rows linseed, 2 rows chickpea + 4 rows linseed and monocropping of each crop and the second factor was included four levels control (no use fertilizer), 100% chemical fertilizers (NPK), biofertilizers (Azoto Barvar -1+ PhosphateBarvar -2+ PotaBarvar-2+ Sulfur Barvar -1) and vermicompost (10 t.ha1-).  In order to measure different elements in seed of linseed and chickpea, dry ash method was used. Concentration of potassium (K) was analyzed by a flame photometer. Nitrogen measurements by Kjeldahl and phosphorus were calculated by yellow method, in which vanadate–molybdate is used as an indicator. Phosphorus (P) content was determined at 430 nm using a spectrophotometer. To measure the microbial respiration of the soil, the Anderson and Dumasuch methods were used and microbial biomass carbon was determined by fumigation- extraction method.
Results and Discussion
Chickpea: According to the results of the experiment, intercropping and fertilizer source had a significant effect on improving nutrients uptake of linseed and chickpea plants. The highest amounts of chlorophyll a, chlorophyll b and carotenoids were obtained from 1 row chickpea + 1 row lineseed and four row chickpea + two rows of lineseed, respectively and the lowest amount was related to sole cropping. The results of fertilizer treatments showed that the highest amounts of chlorophyll a and chlorophyll b and carotenoid were obtained from vermicompost treatment and the lowest amount of these photosynthetic pigments was obtained in non-fertilized conditions. In addition, the results showed that nutrients uptake were affected by cropping pattern and fertilizer treatments. Among the fertilizer treatments, the highest percentage of nitrogen and phosphorus in chickpea were achieved from vermicompost fertilizer and these values were obtained from control treatment.
Linseed: Mean comparison of data showed that photosynthetic pigments were affected by different fertilizer treatments. So that the highest amounts of chlorophyll a, chlorophyll b and carotenoids were obtained from vermicompost treatment and the least amount of these photosynthetic pigments were achieved from control treatment. Among the applied fertilizer treatments, the highest amount of phosphorus and potassium were obtained from biofertilizer treatment and the lowest values ​​were recorded from control (non-usage of fertilizer. Soil microbial respiration and microbial soil biomass were only affected by cropping patterns and fertilizer source. The highest Soil microbial respiration and soil microbial biomass were recorded in two rows of chickpea + two rows of linseed with vermicompost application.
Conclusion
The use of fertilizer source plays an effective role in increasing the uptake nutrients of chickpea and linseed, which is probably due to the supply of water and improved activity of beneficial microorganisms in the soil. Soil respiration and microbial biomass increased under the influence of fertilizer treatments (both biofertilizer and organic fertilizer), however the activity of soil microorganisms was the main reason for the increased soil respiration under application of vermicompost fertilizer.
 

کلیدواژه‌ها [English]

  • Biofertilizer
  • Nutrients
  • Proline
  • Soil microbial respiration
  • Soil microbial biomass
1. Ahmadvand, G., and Hajinia, S., 2016. Ecological aspects study of replacement intercropping patterns of soybean (Glycine max L.) and millet (Panicum miliaceum L.). Journal of Agroecology 7(4): 485-498. (In Persian with English Summary)
2. Akbari, S.H., Kafi, M., and Rezvan Beidokhti, S., 2017. The effect of drought stress and plant density on biochemical and physiological characteristics of two garlic (Allium sativum L.) ecotypes. Iranian Journal of Field Crops Research 14(4): 665-674. (In Persian with English Summary)
3. Alizadeh, Y., Koocheki, A., and Nassiri Mahallati, M., 2018. Assessing effect of manure and chemical fertilizer on net primary production, soil respiration and carbon budget in winter wheat (Triticum aestivum L.) ecosystem under Mashhad climatic condition. Journal of Agroecology 4(9): 1070-1083. (In Persian with English Summary)
4. Amyanpoori, S., Ovassi, M., and Fathinejad, E., 2015. Effect of vermicompost and triple superphosphate on yield of corn (Zea mays L.). Journal of Experimental Biology and Agricultural Sciences 3(4): 494-499.
5. Anderson, T.H., and Domsch, K.H., 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry 25: 393-395.
6. Ansari, M.F., Tipre, D.R., and Dave, S.R., 2015. Efficiency evaluation of commercial liquid biofertilizers for growth of chickpea (Cicer aeritinum L.) in pot and field study. Biocatalysis and Agricultural Biotechnology 4(1): 17-24.
7. Arancon, N., Edwards, C.A., Bierman, P., Welch, C., and Metzger, J.D., 2004. Influences of vermicompost on field strawberries: 1. Effects on growth and yields. Bioresource Technology 93: 145-53.
8. Arguello, J.A., Ledesma, A., Nunez, S.B., Rodriguez, C.H., and Goldfarb, M.D.D., 2006. Vermicompost effects on bulbing dynamics, nonstructural carbohydrate content, yield and quality of Rosado paraguayo garlic bulbs. Horticultural Sciences 41(3): 589-592.
9. Asgharipour, M., and Rafiei, M., 2010. Intercropping of isabgol (Plantago ovate L.) and lentil as influenced by drought stress. American-Eurasian Journal of Agricultural and Environmental Sciences 9(1): 62-69.
10. Azizi, G., Koocheki, A., Nassiri mahallati, M., and Rezvani Moghaddam, P., 2013. Effect of plant diversity and nutrition source on soil microbial respiration and density of weeds in different planting patterns. 5th Congress of Weed Science, Tehran University, Iran. (In Persian)
11. Bargaz, A., Noyce, G., Fulthorpe, R., Carlsson, G., Furze, J., Jensen, E., Dhiba, D., Maney E.Isaac, M., 2017‌. Species interactions enhance root allocation, microbial diversity and p acquisition intercropped wheat and soybean under p deficiency. Applied Soil Ecology 120: 179-188.
12. Bates, L.S., Waldren, R.P., and Teare, L.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
13. Brito, I., Goss, M.J., de Carvalho, M., van Tuinen, D., and Antunes, P.M., 2008. Agronomic management of indigenous mycorrhizas. p. 375-402. In A. Varma (Ed.). Mycorrhiza. Springer-Verlag.
14. Campitelli, P., and Ceppi, S., 2008. Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma 14: 325-33.
15. Darzi, M.T., Ghalavand, A., and Rejali, F., 2009. The effects of biofertilizers application on N, P, K assimilation and seed yield in fennel (Foeniculum vulgare Mill.). Iranian Journal of Medicinal and Aromatic Plants 25(1): 1-19. (In Persian with English Summary)
16. Eskandari, H., and Ghanbari, A. 2011. Evaluation of competition and corn (Zea mays L.) and cowpea (Vignu sinesis L.) intercropping for nutrient consumption. Agricultural Science and Sustainable Production 21(2): 67- 75. (In Persian with English Summary)
17. Eskandari, H., and Ghanbari, A., 2011. The evaluation of competing and complementary components of mixed cropping of maize and cowpea. Journal of Sustainable Agricultural production 21 (2): 68-75. (In Persian with English Summary)
18. Fallaha,S., Rostaeia, M., Lorigooinib, Z., and Abbasi Surkia, A., 2018. Chemical compositions of essential oil and antioxidant activity of dragonhead (Dracocephalum moldavica) in sole crop and dragonhead-soybean (Glycine max) intercropping system under organic manure and chemical fertilizers. Industrial Crops and Products 115: 158–165
19. Garcia Orenes, F., Roldan, A., guerrero, C., Mataix Solera, J., Navarro Pedreno, J., Gomez, I., and MataixBeneyto, J., 2007. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment withsewage sludge. Waste Management 27(12): 1815-1819.
20. Ghanbari, S., Moradi Telavat, M.R., and Siadat, S.A., 2017. Effect of Manure application on forage yield and some nutrients consumption in barley and fenugreek intercropped system. Iranian Journal of Field Crops Research 15(3): 603-614. (In Persian with English Summary)
21. Ghorbanli, M., BakhshiKhaniki, G.H., and Zakeri, A., 2011. Effect of drought stress on anti oxidan compound on linseed (Linum usitatissimum L.). Iranian Journal of Medicinal and Aromatic Plants 27(4): 646-658. (In Persian with English Summary)
22. Ghosh, P.K., Manna, M., Bandyopadhyay, K., Ajay, A., Tripathi, A., Wanjari, R.H., Hati, K.M., Misra, A.K., Acharya, C.L., and Subba Rao, A., 2006. Interspecific interaction and nutrient use in (soybean/sorghum (intercropping system. Agronomy Journal 98: 1097-1108.
23. Ghost, B.C., and Bhat, R., 1998. Environmental hazards of nitrogen loading in wetland rice fields. Environmental Pollution 102: 123-126.
24. Gnaana, S., and Paliwal, K., 2011. Drought induced changes in growth, leaf gas exchange and biomassproduction in Albizia lebbeck and Cassia siamea seedlings. Journal Environmental Biology 32: 173-178.
25. Habyarimana, E., Laureti, D., De Ninno, M., and Lorenenzoni, C., 2004. Performances of biomass sorghum under different water regimes in Mediterranean region. Industrial Crops and Products 20: 23-28
26. Haileselasie, T.H., and Teferii, G., 2012. The Effect of salinity stress on germination of chickpea (Cicer arietinum L.) land race of tigray. Current Research Journal of Biological Sciences 4: 578-583.
27. Hamzei, J., and Babaei, M., 2017. Study of quality and quantity of yield and land equivalent ratio of sunflower in intercropping series with bean. Journal of Agroecology 8(4): 490-504. (In Persian with English Summary)
28. Inal, A., Gunes, A., Zhang, F., and Cakmak, I., 2007. Peanut/ maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry 20: 1-7.
29. Irrigoyen, J.H., Emerich, D.W., and Sanchez Diaz, M., 1992. Water stress induced changes in concentration of proline and total soluble sugars in modulated alfalfa (Medicago sativa L.) plant. Physiological Pantarum 84: 55-60.
30. Izadpanah, M., and Calagari, M., 2014. Effects of drought on osmotic adjustment, antioxidant enzymes and pigments in wild Achillea tinctoria populations. Ethno-Pharmaceutical Products 1(2): 43-54.
31. Jaberi, M., Baradaran, R., Mousavi, G., and Aghhavani Shajari, M., 2018. Effect of biofertilizers and irrigation management on physiological indices of fenugreek (Trigonella foenum- graecum L.). Journal of Plant Ecophysiology 9(32): 142-151. (In Persian with English Summary)
32. Jafar-dokht, R., Mosavi Nik, S. M., Mehraban, A., and Basiri, M., 2015. Effect of water stress and foliar micronutrient application on physiological characteristics and nutrient uptake in mung bean. Journal of Crop Production 8(1): 121-141. (In Persian with English Summary)
33. Jahan, M., Nassiri Mahallati, M., Amiri, M.B., and Ehyayi, H.R., 2013. Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Industrial Crops and Products 43: 606-611.
34. Jannoura, R., Joergensena, R.G., and Bruns, C., 2014. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. European Journal of Agronomy 52: 259–270.
35. Jenkinson, D.S., and Powelson, D.S., 1976. The effect of biocidal treatments of metabolism in soil-V: A method for measuring soil biomass. Soil Biology and Biochemistry 8: 209-213.
36. Karimi, S., Abbaspour, H., Sinaki, J.M., and Makarian, H., 2012. Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). Journal of Stress Physiology and Biochemistry 8: 160–169.
37. Kirkham, M.B., 2016. Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations. Boca Raton, CRC Press. 80 p.
38. Kokalis-Buerelle, N., Kloepper, J.W., and Reddy, M.S., 2006. Plant growth-promoting rhizobacteria as transplant amendments and their affects on indigenous rhizosphere microorganisms. Applied Soil Ecology 31:91-100.
39. Koocheki, A., Nassiri-Mahallati, M., Borumand-Rezazadeh, Z., and Khorramdel, S., 2010. Effect of delayed, intercropping wheat and corn on nitrogen use and utility efficiency. 1th Iranian Conference of Sustainable Agricultural and Healthy Crop Production. Agricultural and Natural Resources Research Center, Isfahan, Iran. (In Persian with English Summary)
40. Liu, X., Ren, G., and Shi,Y., 2011. The effect of organic manure and chemical fertilizer on growth and developmentof Stevia rebaudiana Bertoni. Energy Procedia 5: 1200-1204.
41. Lokhande, V.H., Nikam, T.D., and Penna, S., 2010. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L.. Plant Cell, Tissue and Organ Culture 102: 17-25.
42. Machado, S., 2009. Does intercropping have a role in modern agriculture? Journal of Soil Water Conservation 64: 55-57.
43. Madani, H., Naderi Brojerdi, G.H., Aghajani, H., and Pazaki, A.R., 2010. Evaluating of chemical phosphate fertilizers and phosphor solubilizing bacteria on seed yield, biological yield and tissues relative phosphorus content in winter rapseed (Brassica napus L.). Journal of Agronomy and Plant Breeding 6(4): 95-104. (In Persian with English Summary)
44. Manivannan, P., Abdul Jaleel, C., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G.M.A., and Panneerselvam, R., 2007. Growth, biochemical modifications and proline metabolism in (Helianthus annuus L.) as induced by drought stress. Colloids and Surfaces 59: 141-149.
45. Mehrvarz, S., and Chaichi, M.R., 2008. Effect of phosphate solubilizing microorganisms and phosphorus fertilizer on forage and grain quality of barley (Hordeum vulgare L.). American-Eurasian Journal of Agricultural and Environmental Science 3(6): 855-860.
46. Mobasser. H.R., Vazirimehr, M.R., and Rigi, K., 2014. Effect of intercropping on resources use, weed management and forage quality. International Journal of Plant, Animal and Environmental Sciences 4(2): 706-713.
47. Najafi, N., and Mostafae, M., 2015. Improvement of corn plant nutrition by farmyard manure application and intercropping with bean and bitter vetch in a calcareos soil. Journal of Soil Management and Sustainable Production 5(1): 1- 22. (In Persian with English Summary)
48. Naseri, Z., Abbassi, F., and Mahmoodzadeh, H., 2011. Effects of different water deficit levels and GA3 on the accumulation of proline and soluble and insoluble sugars in leaves of a new cultivar of barley (Hordeum vulgar L.). Journal of Plant Science Researches 6(2): 1-10. (In Persian with English Summary)
49. Nemati Darbandi, M., Azizi Mohammadi, S., and Karimpour, S., 2014. Foliar application of different concentration of vermiwash effects on morphological traits, yield, and essence of lemon balm drug (Melisa officinalis L.). Journal of Horticultural Science (Agricultural Science and Technology) 27(4):411-417. (In Persian with English Summary)
50. Nnadi, L.A., and Haque, I., 1986. Forage legume cereal systems: improvement of soil fertility and agricultural production with special reference to sub-Saharan Africa. In I. Haque, S. Jutzi and P.J.H. Neate (Eds.). Potential of Forage Legumes in Farming Systems of Sub-Saharan Africa. Addis Ababa, Ethiopia. p. 330-362.
51. Nurbakhsh, F., Koocheki, A., and Nassiri Mahallati, M., 2016. Evaluation of Species diversity effect on some of agroecosystem services in the intercropping of corn, soybean and marshmallow 2- yield, land equivalent ratio, soil microbial respiration and biomass, carbon sequestration potential. Journal of Crop Production 9(2): 49-68 . (In Persian with English Summary)
52. Nyasasi, B.T., and Kisetu, E., 2014. Determination of land productivity under maize-cowpea intercropping system in agro-ecological zone of mount Uluguru in Morogoro, Tanzania. Global Journal of Agricultural Sciences 2(2): 147-157.
53. Oliviera-Neto, C.F., Silva-Lobato, A.K., Goncalves-Vidigal, M.C., Costa, R.C.L., Santos-Filho, B.G., Alves, G.A.R., Silva-Maia, W.J.M., Cruz, F.J.R., Neres, H.K.B., and Santos- Lopes, M.J., 2009. Carbon compounds and chlorophyllcontents in sorghum submitted to water deficit during three growth stages. Science and Technology 7: 588-593.
54. Pakgohar, N., and Ghanbari, A., 2013. Evaluation of competition and nutrient consumption of Nutrifid millet and green pea in intercropping. Journal of Crops Improvement 15(4): 137-150. (In Persian with English Summary)
55. Patade, V.Y., Bhargava, S., and Suprasanna, P., 2011. Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions 6: 275-282.
56. Raeisi, N., Vakili, M.A., Sarhadi, J., and TorkiNejad, F., 2015. The effect of manure, iron and zinc on yield and cumin (Cuminum cyminum L.). Iranian Journal of Medicinal and Aromatic Plants Research 31(1): 138-139. (In Persian with English Summary)
57. Reinhard, W., Neugschwandtner, R., and Kaul, P.H., 2016. Concentrations and uptake of macronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Archives of Agronomy and Soil Science 62(9): 1236-1249.
58. Rezaei-Chiyaneh, E., Khorramdel, S., Movludi, A., and Rahimi, A., 2017. Effects of nanchelated zinc and mycorrhizal fungi inoculation on some agronomic and physiological characteristic of safflower (Carthamus tinctorius L.) under drought stress conditions. Iranian Journal of Field Crops Research 15(1): 168-184. (In Persian with English Summary)
59. Rezaei-Chiyaneh, E., Seyyedi, S.M., Ebrahimian, E., Siavash Moghaddama., S., and Damalasd., C.A., 2018. Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Industrial Crops and Products 112: 741–748.
60. Rezaei-Chiyaneh, E., Zehtab Salmasi, S., Ghasemi Golazani, K., and Del Azar, A., 2013. Physiological reaction of fennel (Foeniculum vulgar) in water restriction. Journal of Agroecology 4(4): 347-355. (In Persian with English Summary)
61. Rostaei, M., and Fallah, S., 2016. Assessment of canopy characteristics and essential oil yield of fenugreek and black cumin in intercropping under application of organic and chemical fertilizer. Journal of Sustainable Agriculture and Production Science 25(4): 1-23. (In Persian with English Summary)
62. Sadeghian Dehkordi, S.A., Tadayyon, A., Tadayon, M.R., and Saffar, A., 2015. Effect of drought stress and bio-fertilizers and chemical fertilizers on some morphological and physiological characteristis of linseed (Linum usitatissimum L.). Arid Biome Scientific and Research Journal 5(2):83-92. (In Persian with English Summary)
63. Sallaku, G., Babaj, I., Kaciu, S., and Balliu, A., 2009. The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. Journal of Food, Agriculture and Environment 7: 869-872.
64. Seyed Sharifi, R., 2016. Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Zemdirbyste-Agriculture 103(3): 251-258.
65. Sheikhpour, S., Sirousmehr, A.R., and Fakheri, B.R., 2014. Evaluation of chlorophyll content, nutrients and yield of borage (Borago officinalis L.) in responses to chemical and biological fertilizers. Advanced in Crop Science 2: 131-140.
66. Slama, I., Ghnaya, T., Hessini, k., Messedi, D., Savoure, A., and Abdelly, C., 2007. Compretivestady of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Expermental Botany 61: 10-17.
67. Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., and Hritcu, L., 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bea (Phaseolus coccineus L.). Scientia Horticulturae 151: 22-29.
68. Tang, X., Bernard, L., Brauman, A., Daufresne, T., Deleporte, P., Desclaux, D., Souche, G., Placella, S.A., and Hinsinger, P., 2014. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biology and Biochemistry 75: 86-93.
69. Todaka, D., Shinozaki, K., and Yamaguchi-Shinozaki, K., 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6: 2-20.
70. Tohidinejad, E., Madani, H., and Jenabi, M., 2011. Organic fertilizers and vermicompost. Shahid Bahonar University of Kerman Publication. p. 150. (In Persian)
71. Veisipoor, A., Majidi, M.M., and Mirlohi, A., 2012. Traits relationship in sainfoin (Onobrychis viciifolia) under normal and water stress conditions. Iranian Journal of Field Crop Science 42(4): 745-756. (In Persian with English Summary)
72. Wang, B., Mei, C., and Seiler, J.R., 2015 a. Early growth promotion and leaf level physiology changes in Burkholderia phytofirmans strain PsJN inoculated switchgrass. Plant Physiology and Biochemistry 86: 16-23.
73. Wang, Z., Bao, X., Li, X., Jin, J., Zhao, J., Sun, J., Christie, P., and Li, L., 2015 b. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil 391: 265–282.
74. Xoconostle-Cazares, B., Ramirez-Ortega, F.A, Flores-Elenes, L., and Ruiz-Medrano, R., 2010. Drought tolerance in crop plants. American Journal of Plant Physiology 5(5): 241-256.
75. Yamuna, B.G., Yogananda, S.B., Thmmegowda, M.N., and Lalitha, B.S., 2017. Effect of maize- based intercropping system on nutrient uptake and yield of crops in southern dry zone of Karnataka. International Journal of Farm Sciences 7(1): 142-164.
76. Zare Mehrjerdi, M., Bagheri, A., Bahrami, A., Nabati, J., and Masoumi, A., 2016. Effect of drought stress on osmotic adjustment, proline and soluble sugars in root, shoot, and relationship with drought tolerance in 12 genotypes of Chickpea (Cicer arietinum L.). Iranian Journal of Field Crop Science 47(3): 451-462. (In Persian with English Summary)
77. Zhang, Y., Chen, F., Li, L., Chen, Y., Liu, B., Zhou, Y., Yuan, L., Zhang, F., and MI, G., 2012. The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems. Science China Life Sciences 11: 993-1001.
78. Zuo, Y., and Zhang, F., 2011. Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil 339: 83-95.
CAPTCHA Image