مقدار تولید و ارزش غذایی علوفه سورگوم Sorghum bicolor L.)) کشت شده با کاربرد تلفیقی کودهای زیستی و شیمیایی در رژیم‌های مختلف آبیاری

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی دانشگاه مراغه، ایران

چکیده

به‌منظور بررسی اثر کاربرد تلفیقی کودهای زیستی و شیمیایی بر خصوصیات کمّی و کیفی علوفه سورگوم Sorghum bicolor L.)) رقم اسپیدفید، آزمایشی در سال زراعی 1395 به‌صورت کرت­های خرد شده در قالب طرح بلوک‌های کامل تصادفی با 15 تیمار و سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه مراغه اجرا شد. فاکتور اصلی شامل رژیم‌های مختلف آبیاری (آبیاری بعد از 60 ، 100 و 140 میلی‌متر تبخیر از تشتک تبخیر کلاس A) و فاکتور فرعی شامل (کود زیستی بیوسوپر و فسفات بارور 2، 100 درصد کود شیمیایی، کود زیستی+ 75 درصد شیمیایی، کود زیستی+ 50 درصد شیمیایی، کود زیستی+ 25 درصد شیمیایی) بودند. نتایج نشان داد بیش‌ترین میزان عملکرد علوفه خشک (8/26 تن در هکتار) با مصرف 100 درصد کود شیمیایی بدون اختلاف معنی‌دار با تیمار کود زیستی+ 75 درصد کود شیمیایی به‌دست آمد. هم‌چنین کم‌ترین میزان عملکرد علوفه خشک (6/20 تن در هکتار) نیز با کاربرد انفرادی کود زیستی حاصل شد. با افزایش دور آبیاری از میزان عملکرد علوفه خشک سورگوم کاسته شد. به‌طوری‌که میزان عملکرد علوفه خشک در دور آبیاری اول نسبت به دور آبیاری دوم و سوم به‌ترتیب 04/10 و 44/26 درصد افزایش یافت. بیش‌ترین میزان ماده خشک قابل هضم، کل ماده غذایی قابل هضم، ارزش نسبی تغذیه­ای و انرژی ویژه شیردهی با کاربرد تلفیقی کود زیستی+ 25 درصد کود شیمیایی به‌دست آمد. هم‌چنین بیش‌ترین میزان شاخص­های CP، WSC، DMI، DMD، TDN، RFV، NEL و نسبت برگ به ساقه در دور آبیاری سوم (140 میلی‌متر تبخیر از تشتک تبخیر) مشاهده شد. هم‌چنین نتایج نشان‌دهنده این است که با افزایش دور آبیاری میزان ADF و NDF کاهش یافت. به‌طوری‌که میزان ADF و NDF در دور سوم نسبت به دور اول آبیاری 29/10 و 95/5 درصد کاهش یافت. به‌طور کلی کاربرد تلفیقی کودهای زیستی و شیمیایی منجر به افزایش عملکرد علوفه خشک و بهبود کیفیت آن در شرایط تنش خشکی گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Amount of Production and Nutritional Value of Cultivated Forage Sorghum (Sorghum bicolor L.) with Integrated Application of Bio and Chemical Fertilizers under Different Irrigation Regims

نویسندگان [English]

  • Zahra Sayyadi Azar
  • Abdollah Javanmard
  • Fariborz Shekari
  • Amin Abbasi
  • Mostafa Amani Machiani
Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Iran
چکیده [English]

Introduction
Forage production has recently reduced in some arid and semi-arid countries due to intensive grazing and consecutive dryness. Increasing scarcity of water irrigation, particularly in arid and semi-arid climates where agricultural systems are dependent upon supplemental irrigation, is becoming the most important problem for producing forage.
The bio fertilizers can serve a potential tool for sustaining crop production without destruction of the soil and environment. Therefore, integrated application of bio fertilizer and chemical fertilizer seems to be a sustainable approach in agricultural systems. The plant growth promoting bacteria plays an important role in the crop growth and development through secretion of growth promoting metabolites and nutrient supply. These species increase nitrogen fixation and release plant growth promoting substances and hormones and improve nutrient and water uptake.
Sorghum is becoming an increasingly important forage crop in many arid and semi-arid regions of the world especially in Iran because of its advantages over corn in warm and dry climates. The objective of this study was to evaluate the effects of different fertilizer patterns and irrigation intervals on the quantity and quality of the sorghum forage.
Materials and Methods
The experiment was conducted as split plot design based on randomized complete block design (RCBD) with 15 treatments and three replications at the faculty of Agriculture, University of Maragheh during 2016. The treatments included three different irrigation regimes (irrigation after 60, 100 and 140 mm evaporation from class A evaporation pan) and five different fertilization patterns (100% chemical fertilizer, bio fertilizer, bio fertilizer+ 75% chemical fertilizer, bio fertilizer+ 50% chemical fertilizer and bio fertilizer+ 25% chemical fertilizer). In the current research, quantity and quality properties including neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), crude fiber (CF), dry matter digestibility (DMD), water soluble carbohydrate (WSC), Total digestibly nutrient (TDN), dry matter intake (DMI), Relative feed value (RFV), net energy for lactation (NEL) and ash was calculated. Analysis of variance of the data and mean comparison were carried out by MSTATC statistical software based on Duncan’s multiple range tests.
Results and Discussion
The results showed that the dry forage yield of sorghum was significantly affected by different irrigation and fertilization patterns. The highest forage yield (26.8 t.ha-1) was achieved in 100% chemical fertilizer that was not significantly different with bio fertlizer+ 75% chemical fertilizer. Also, the lowest dry forage yield (20.6 t.h-1) was observed in application of bio fertilizer. The reason for the increase of dry matter yield in integrated application of chemical and bio fertilizers is attributed to improved nutrient uptake, increased photosynthesis, and more activity of catalase and peroxidase enzymes by plant growth promoting bacteria. In addition, with increasing irrigation interval, the biomass yield of forage sorghum was significantly reduced. Decreasing the biomass yield of sorghum by increasing irrigation intervals may be due to reducing the absorption of fermentation elements, decreasing growth and leaf area, decreasing photosynthesis, increasing the damage caused by drought stress, and increasing the amount of active oxygen radicals. The highest values of DMD, TDN, RFV and NEL were achieved in bio fertilizer+ 25% chemical fertilizer. Also, the values of CP, WSC, DMI, DMD, TDN, RFV and NEL increased by enhancing irrigation intervals. Increase of the mentioned indices is attributed to decreasing of neutral detergent fiber (NDF), acid detergent fiber (ADF) content under integrated application of chemical and bio fertilizers and increasing irrigation intervals. Results showed a positive and significant correlation between sorghum dry forage yield and crude protein yield, WSC, ADF and NDF. On the other hand, there was a negative and significant correlation between ADF and NDF with CP, DMI, DMD, TDN, RFV and NEL.
Conclusion
Generally, the results of this experiment demonstrated that different irrigation regimes and different fertilizer patterns had a significant effect on the quantitative and qualitative traits of the sorghum forage. The values of dry forage yield, crude fiber, ADF and NDF decreased by increasing irrigation intervals, while the values of leaf to stem ratio, CF, WSC, DMI, DMD, TDN, RFV and NEL increased in this irrigation round. In comparison between different fertilization patters, the highest forage yield was achieved in 100% chemical fertilizer that was no significantly different with bio fertilizer+ 75% chemical fertilizer. Also, the integrated application of bio fertlizer+ 25% chemical fertilizer significantly increased the content of DMI, DMD, TDN, RFV and NEL. Based on the results of this study, it can be stated that the integrated application of bio fertilizers with chemical fertilizer in drought stress conditions resulted in quantitative and qualitative improvement of sorghum forage.

کلیدواژه‌ها [English]

  • Acid detergent fiber
  • Azotobacter
  • Biosuper
  • Net energy for lactation
  • Water Soluble Carbohydrate
Ahemad, M., and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science 26(1): 1-20.
Anabi Milani, A. 2003. Effect of irrigation regimes on yield components and water use efficiency of wheat in saline soil. Soil and Water Science 16(1): 121-135. (In Persian with English Summary)
Assefa, G., and Ledin, I. 2001. Effect of variety, soil type and fertilizer on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Animal Feed Science and Technology 92: 95–111.
Bilal, M., Ayub, M., Tariq, M., Tahir M., and Nadeem, M.A. 2017. Dry matter yield and forage quality traits of oat (Avena sativa L.) under integrative use of microbial and synthetic source of nitrogen. Journal of the Saudi Society of Agricultural Sciences 16: 236–241.
Bishnoi, U. 2015. PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. Advances in Botanical Research 75: 81–113.
Carmi, A., Aharoni, Y., Edelstein, M., Umiel, N., Hagiladi, A., Yosef, E., Nikbachat, M., Zenou, A., and Miron, J. 2006. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology 131: 120–132.
Coblentz, W.K., Akins M.S., Cavadini J.S., and Jokela, W.E. 2017. Net effects of nitrogen fertilization on the nutritive value and digestibility of oat forages. Journal of Dairy Science 100: 1739–1750.
Coleman, S.E., and Moore, J.E. 2003. Feed quality and animal performance. Field Crops Research 84: 17- 29.
Contreras-Govea, F.E., Muck, R.E., Armstrong, K.L., and Abrecht, K.A. 2009. Nutritive value of corn silage in mixture with climbing beans. Animal Feed Science and Technology 150: 1-8.
Francisco, E., Govea, C., Muck, E.R., Armstrong, L.K., and Albrecht, K. 2009. Fermentability of corn–lablab bean mixtures from different planting densities. Animal Feed Science and Technology 149: 298–306.
Gray, E.J., and Smith, D.L. 2005. Interacellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry Journal 37: 395-412.
Haberle, J., Svoboda, P., and Raimanova, I. 2008. The effect of post-anthesis water supply on grain nitrogen concentration and grain nitrogen yield of winter wheat. Plant, Soil and Environment 54: 304–312.
Hail, Y., Daci, M. and Tan, M. 2009. Evaluation of annual legumes and barley as sole crops and intercrop in spring frost conditions for animal feeding. Yield and quality. Journal Animal Advance 8(7): 1337-1342.
Hoekstra, F.A., and Buitink, J. 2001. Mechanisms of plant dessiccation tolerance. Trends in Plant Science 8: 431-438.
Horrocks, R.D., and Vallentine J.F. 1999. Harvested forage. Academic Press, London, UK.
Jahanzad, E., Jorat, M., Moghadam, H., Sadeghpour, A., Chaichi, M.R. and Dashtaki, M. 2013. Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agricultural Water Management 117: 62-69.
Jaleel, C.A., Sankar, B., Murali, P.V., Gomathinayagam, M., Lakshmanan, G.M.A., and Panneerselvam, R. 2008. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus L. impact on ajmalicine accumulation. Colloids and Surfaces B: Biointerfaces 62: 105-111.
Kader, M.A., Mian, M.H., and Hoque, M.S. 2002. Effects of Azotobacter inoculant on the yield and nitrogen uptake by wheat. Online Journal of Biological Sciences 2: 2 59-261.
Lithourgidis, A.S., Vasilakoglou, I.B., Dhima K.V., Dordas, C.A., and Yaikoulaki, M.D. 2006. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research 99: 106-113.
Marsalis, M.A., Angadi, S.V., and Contreras-Govea, F.E. 2010. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research 116: 52–57.
Mehrvarz, S., and Chaichi, M.R. 2008. Effect of Phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L). American- Eurasian Journal Agricultural and Environmental Science 3: 855-860.
Naghizadeh, M., and Galavi, M. 2012. Evaluation of phosphorous biofertilizer and chemical phosphorous influence on fodder quality of corn (Zea mays L.) and grass pea (Lathyrus sativa L.) intercropping. Agroecology 4(1): 52-62. (In Persian with English Summary)
Nakhzari Moghaddam, A. 2016. Effect of nitrogen and different intercropping arrangements of barley (Hordeum vulgare L.) and pea (Pisum sativum L.) on forage yield and competitive indices. Journal of Agroecology 8(1): 47-58. (In Persian with English Summary)
Nabati Nasaz, M., Gholipouri, A., and Mostafavi Rad, M. 2016. Evaluation of forage yield and important agronomic indices of corn as affected by intercropping systems with peanut and nitrogen rates. Journal of Agroecology 8(1): 70-81. (In Persian with English Summary)
Naseri, R., Moghadam, A., Darabi, F., Hatami, A., and Tahmasebei, G.R. 2013. The Effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (S.C. 704) as a second cropping in western Iran. Bulletin of Environment, Pharmacology and Life Sciences 2 (10): 104–112.
Raei, Y., Ashaghi Sardrood, S.N., and Bagheri Pirouz, A. 2013. The effects of chemical and biological fertilizers application on forage sorghum (Sorghum bicolor L.) yields of different harvests. Agroecology 5(3): 231-242. (In Persian with English Summary)
Rahbari, A., Masood sinaki, J, and Zarei, M. 2015. Effects of Phosphate Fertilizer and Less Irrigation on Grain Yield of the Forage Millet. Journal of Agronomy Science 5(10): 27-38.
Rostamza, M., Chaichi, M.R., Jahansouz, M.R., and Alimadadi, A. 2011. Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agricultural Water Management 98: 1607–1614.
Sadeghpour, A., Jahanzad, E., Esmaieli, A., Hosseini M.B., and Hashemi, M. 2013. Forage yield, quality and economic benefit of intercropped barley and annual medic in semi-arid conditions: Additive series. Field Crops Research 148: 43-48.
Tang, C.H., Yang, X., Chen, X., Ameen, A., and Xie, G. 2018. Sorghum biomass and quality and soil nitrogen balance response to nitrogen rate on semiarid marginal land. Field Crops Research 215: 12-22.
Tas, S., and Tas, B. 2007. Some physiological responses of drought stress in wheat genotypes tolerance of fine grain aromatic rice (Oryza sativa L.). Journal Agronomy and Crop Science 194: 325-333.
Van Loon, L.C. 2007. Plant response to plant growth promoting rhizobacteria. European Journal of Plant Pathology 119: 243-254.
Vasilakoglou, I., Dhima, K., Karagiannidis, N., and Gatsis, T. 2011. Sweet sorghum productivity for bio-fuels under increased soil salinity and reduced irrigation. Field Crops Research 120: 38–46.
Vessy, K. 2003. Plant growth promoting rhizobacteria as biofertilizars. Plant and Soil 255: 571-586.
Wang, H., Zhang, L., Dawes, W.R., and Liu, C. 2001. Improving water use efficiency of irrigated crops in the North China Plain-measurements and modeling. Agriculture and Water Management 48: 151–167.
Wu, S.C., Caob, Z.H., Lib, Z.G., Cheunga, K.C., and Wong, M.H. 2005. Effects of biofertilizers containing N-fixer, P and K Solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125: 155-166.
Yang, Y.H., Jiang, P.A., Ai, E.K., and Zhou, Y.Q. 2005. Effects of planting Medicago sativa L. on soil fertility. Arid Land Geography 28: 248-251.
Yazdani, M., Bahmanyar, M.A., Pirdashti, H., and Esmaili, M.A. 2009. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proceedings of World Academy of Sciences, Engineering and Technology 3(1): 2070-3740.
Yilmaz, Ş., Özel, A., Atak, M., and Erayman, M. 2014. Effects of seeding rates on competition indices of barley and vetch intercropping systems in the eastern mediterranean. Turkish Journal of Agriculture and Forestry 39: 135–143.
CAPTCHA Image