ارزیابی اثرات زیست‌‌محیطی ارقام مختلف شلتوک برنج (Oryza sativa L.) در شهرستان کردکوی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشگاه فردوسی مشهد

چکیده

این مطالعه با استفاده از روش ارزیابی چرخه حیات به بررسی اثرات زیست‌محیطی تولید شلتوک در ارقام مختلف برنج (Oryza sativa L.) ، (طارم هاشمی، طارم سنگی، شیرودی، فجر و ندا) مزارع شهرستان کردکوی واقع در استان گلستان می‌پردازد. این بررسی با به‌کارگیری روش ارزیابی چرخه حیات (LCA) به تخمین پیامدهای زیست‌محیطی کشت ارقام مختلف موجود در منطقه پرداخته‌ شده است. روش LCA، با استفاده از مؤلفه‌های، میزان مصرف نهاده‌های طبیعی به تحلیل پیامدهای مخرب حاصل از مصرف منابع در نظام‌های تولیدی می‌پردازد و با شناسایی، نوع نهاده‌های مصرفی، انرژی مورداستفاده، مواد مصرفی در فرآیند تولیدی، اثرات و ضایعات تولیدشده را ‌محاسبه می‌نماید. با استفاده ازاین‌روش می‌توان به ارزیابی پتانسیل اثرات گرمایش جهانی، اسیدیته، اتروفیکاسیون خشکی، اکسیداسیون فتوشیمیایی، اثر سمیت بر انسان (براثر کادمیوم موجود در فسفات)، اثر سمیت کادمیوم بر زمین، اثر سمیت کادمیوم بر آب شیرین، تخلیه منابع فسیلی، تخلیه منابع فسفات، پتاسیم و آب پرداخت. نتایج پژوهش نشان داد که در میان اثرات زیست‌محیطی برآورد شده، پتانسیل اکسیداسیون فتو شیمیایی بالاترین اثر را در تولید برنج دارا می‌باشد. هم‌چنین دو اثر زیست‌محیطی تخلیه‌ی منابع فسفات و تخلیه‌ی منابع آبی از اثرات زیست‌محیطی مهم دیگر در کشت برنج می‌باشند. به‌طور متوسط در تولید برنج، میزان سه اثر پتانسیل اکسیداسیون فتو شیمیایی، اثر تخلیه منابع آبی و اثر تخلیه منابع فسفات به‌ترتیب معادل 033/2، 296/1 و 896/0 ارزیابی‌شده است. در بین اثرات زیست‌محیطی بررسی‌ شده در این مطالعه، سه اثر زیست‌محیطی مربوط به اسیدیته ، اتروفیکاسیون خشکی و سمیت بر آب به‌عنوان کمترین اثر محیط‌زیستی مخرب برای میانگین ارقام برنج شناسایی ‌شده‌اند. همچنین بررسی ارقام مختلف نشان داد که در بین ارقام مختلف رقم طارم هاشمی و طارم سنگی بالاترین میزان پتانسیل ایجاد آلودگی را در بین سایر ارقام مختلف به ازای تولید یک تن شلتوک در هکتار دارا هستند. پایین‌ترین میزان مجموع شاخص نهایی اثرات را در بین ارقام مورد بررسی مربوط به رقم ندا می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Environmental Impact Assessment of Different Varieties of Rice (Oryza sativa L.) Paddy in the Kordkoy

نویسندگان [English]

  • Zahra Homauini 1
  • Leili Abolhasani 1
  • mahmood sabouhi 2
1 Department of Agricultural Economy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Ferdowsi university of mashhad
چکیده [English]

Introduction
Agriculture is one of the most important effective sections toward the environment. One of the agricultural activities impact on the environment can be issues such as nitrate leaching to groundwater and surface resources, soil salinization, acidification and greenhouse gas emissions. Planting rice is an activity that causes a significant amount of pollution. Rice can be counted as an essential grain all over the world. In Iran, rice is the second most important crop after wheat, which is part of the main items of household consumption basket. Per capita consumption of rice in the country is 100 grams per day and Iran is ranked 13th in the world rice consumption. As the farmers are unaware and mostly ignorant of the fact, they use an inordinate amount of primary inputs like chemical fertilizers that are detrimental to the environment. Noticing the importance and strategic role of this product, hereby this study investigated the environmental effects of rough rice of different kinds (Tarim hashemi, Tarom sangi, Neda, Fajr and Shirudi) by evaluating the cycle of life.
Materials and Methods
The area in this study is located in Kordkuy, Golestan. The sampling is done by random interviews with the farmers. LCA method was used according to the extent of natural factors in order to analyze the defective consequences due to use of the resources. By identifying the utilized elements, energy, material in the production procedure, the effects and defects can be estimated. Using this method, one can evaluate the potential effects on global warming, acidity, Terrestrial Eutrophication Potential, photochemical oxidation, and the toxicity effect on human (caused by Cadmium in phosphate), Terrestrial Eco toxicity potential, Aquatic Eco toxicity, fresh water potential, Fossil fuel consumption, Phosphate consumption, Potash consumption, and Water Consume.
Results and Discussion
Chemical fertilizers (like urea, potassium, phosphate), fossil fuels, water and electricity are the causes of the pollution on the farms in this study. Using these inputs creates contaminants that can be categorized as nitrogen (N), carbon (C), sulphur (S), and phosphorus (P). Among all the inputs Nitrogen fertilizers is the most important factor to spread the mission of air pollutants. The estimated environmental effects in planting rice show that photochemical oxidation potential has the highest effect on producing rice. Moreover, depletion of phosphate and water resources are the other important effects as the result of planting rice. On average three effective factors like photochemical oxidation potential, depletion of phosphate and water resources are evaluated as 2.033, 1.296, and 0.896, respectively. And some other environmental effects like acidity, Terrestrial Eutrophication Potential, toxicity of water have the least destructive effects on average. Among all the other figures, Tarim hashemi and Tarom sangi figures have the highest range of creating pollution estimated as 1 ton rough rice per hectare and the least is determined to be a figure related to Neda variate. The final indicator shows the range of this variation from 0.0080 to 2.975. The most photochemical oxidation potential is attributed to Tarim hashemi and the least toxicity effect on water is recognized by the figures in Shirudi. In all the investigated effects in this study, the long-grain rice figures (Tarim hashemi, Tarom sangi) were shown to have more detrimental effects compared to productive igures (Neda, Fajr and Shirudi) since it has less output.

Conclusion
The results of the study show that the figures with the highest output in production ,(Neda, Fajr and Shirudi) although has used more of the inputs , could spread less pollution in the estimate of 1 ton rough rice per hectare. By planting varieties that produce higher yields the amount of pollution reduced, can be reduced. Also, in order to reduce the amount of pollution, controlling the inputs can decrease the amount of pollution. The biggest pollutants such as nitrogen fertilizers that can be replaced by fertilizers such as stabilizers Nitrogen plants. This solution may reduce the emissions of pollutants from nitrogen fertilizers on the farm.

کلیدواژه‌ها [English]

  • Classification impacts
  • Environmental hazards
  • Evaluating the cycle of life
  • Indirect effects of Nitrogen
  • Spreading the pollution
Abbasi, M. 2016. Management of Agriculture Golestan Province. http://www7.irna.ir/fa/News/81661406. (Accessed 8 Oct 2016). (In Persian)
Amiri, B. 2015. Head of Department of Crop Sciences, Agriculture and Natural Resources, University of Mazandaran. http://www.irna.ir/fa/News/81623112. (Accessed 27 Jun 2016). (In Persian)
Ashworth, A.J., Taylor, A.M., Reed, D.L., Allen, F.L., Keyser, P.D., and Tyler, D.D. 2015. Environmental impact assessment of regional switchgrass feedstock production comparing nitrogen input scenarios and legume-intercropping systems. Journal of Cleaner Production 87: 227-234.
Bacenetti, J., Pessina, D., and Fiala, M. 2016. Environmental assessment of different harvesting solutions for short rotation coppice plantations. Science of the Total Environment 541: 210-217.
Blengini, G.A., and Busto, M. 2009. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management 90: 1512-1522.
Björklund, A. 2012. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden. Environmental Impact Assessment Review 32: 82-87.
Bojaca, C.R., Wyckhuys, K.A., and Schrevens, E. 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production 69: 26-33.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20: 247-264.
Brentrup, F., Küsters, J., Lammel, J., and Kuhlmann, H. 2002. Impact assessment of abiotic resource consumption conceptual considerations. The International Journal of Life Cycle Assessment 7: 301-307.
Brentrup, F., Küsters, J., Lammel, J., and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5: 349-357.
Carlsson-Kanyama, A., Ekström, M.P., and Shanahan, H. 2003. Food and life cycle energy inputs: consequences of diet and ways to increase efficiency. Ecological Economics 44: 293-307.
Dastan, S., Soltani, A., Mohammadi, G., and Maddani, H. 2013. Global warming potential of carbon dioxide emissions and energy consumption in the paddy planting. Journal of Agroecology 6(4): 823-835. (In Persian with English Summary)
EEA. 2004. http://glossary.eea.eu.int/EEAGlossary/N/nonmethane_ volatile_organic_compound [WWW, visited 13 Feb. 2004].
EMEP, E. 2013. EEA air pollutant emission inventory guidebook 2013. European Environment Agency, Copenhagen.
Erdal, G., Esengün, K., Erdal, H., and Gündüz, O. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 32: 35-41.
Esmaeilpur, B., Khorramdel, S., and Amin Ghafori, A. 2014. Analysing environmental effects of potato production systems based on of nitrogen fertilizer using life cycle assessment. Journal of Crop Production 8: 199-224. (In Persian with English Summary)
FAO, 2003. World Agriculture: Towards 2015/2030. An FAO Perspective. http://www.fao.org.
Fiala, M., and Bacenetti, J. 2012. Model for the economic, energy and environmental evaluation in biomass productions. Journal of Agricultural Engineering 43: 5.
Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., and Klüppel, H.J. 2006. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. The International Journal of Life Cycle Assessment 11: 80-85.
Fusi, A., Castellani, V., Bacenetti, J., Cocetta, G., Fiala, M., and Guidetti, R. 2016. The environmental impact of the production of fresh cut salad: a case study in Italy. The International Journal of Life Cycle Assessment 21: 162-175.
Gasol, C.M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, P., and Rieradevall, J. 2007. Life cycle assessment of a Brassica carinata bioenergy Cropping system in southern Europe. Biomass and Bioenergy 31: 543-555.
Ghadiryanfar, M., Rosentrater, K.A., Keyhani, A., and Omid, M. 2016. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews 54: 473-481.
Ghorbani, M., Heidari Kamalabadi, R., and Karimi, H. 2010. Assess citizen satisfaction Mashhad urban bus network services. Journal of Mashhad Study 3: 25-47. (In Persian with English Summary)
Guinee, J. 2001. Handbook on life cycle assessment-operational guide to the ISO standards. The International Journal of Life Cycle Assessment 6: 255-255.
Hatirli, S.A., Ozkan, B., and Fert, C. 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy 31: 427-438.
Hokazono, S., and Hayashi, K. 2012. Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. Journal of Cleaner Production 28: 101-112.
Hormozi, M.A., Asoodar, M.A., and Abdeshahi, A. 2012. Impact of mechanization on technical efficiency: A case study of rice farmers in Iran. Procedia Economics and Finance 1: 176-185.
Hasler, K., Bröring, S., Omta, S.W.F., and Olfs, H.W. 2015. Life cycle assessment (LCA) of different fertilizer product types. European Journal of Agronomy 69: 41-51.
Hosseini, S.E., Andwari, A.M., Wahid, M.A., and Bagheri, G. 2013. A review on green energy potentials in Iran. Renewable and Sustainable Energy Reviews 27: 533-545.
IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel of Climate Change (IPCC). National Greenhouse Gas Inventories Programme. Online at: http://www.ipcc- nggip.iges.or.jp/public/2006gl/index.html.
Iribarren, D., and Vazquez-Rowe, I. 2013. Is labor a suitable input in LCA+ DEA studies? Insights on the combined use of economic, environmental and social parameters. Social Sciences 2: 114-130.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18: 336-345.
ISO (International Organization for Standardization). 2006. ISO 14040: 2006 (E) Environmental Management– Life Cycle Assessment– Principles and Framework.
Jaruwongwittaya, T., and Chen, G. 2010. A review: renewable energy with absorption chillers in Thailand. Renewable and Sustainable Energy Reviews 14: 1437-1444.
Khojastehpour, M., Nikkhah, A., and Hashemabadi, D. 2015. A comparative study of energy use and greenhouse gas emissions of canola production. International Journal of Agricultural Management and Development 5: 51-58.
Khojastepur, M., Taherirad, A., and Nikkhah, A. 2014. Life Cycle Assessment cotton production in Golestan Province based on biomass production, energy and money. Iranian Journal of Biosystems Engineering 46: 95-104. (In Persian with English Summary)
Khorramdel, S., Ghorbani, R., and Amin Ghafori, A. 2013. Compare the environmental impact of production systems in rainfed and irrigated barley using life cycle assessment. Journal of Plant Production Research 22: 243-264. (In Persian with English Summary)
Khoshnevisan, B., Rajaeifar, M.A., Clark, S., Shamahirband, S., Anuar, N.B., Shuib, N.L.M., and Gani, A. 2014. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment 481: 242-251.
Kirchmann, H., and Thorvaldsson, G. 2000. Challenging targets for future agriculture. European Journal of Agronomy 12: 145-161.
Koga, N., and Tajima, R. 2011. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan. Journal of Environmental Management 92: 967-973.
Koockeki, A., Nassiri Mahallati, M., Mahluji rad, M., and Fallahpour, F. 2013. Economic value of wheat production in ecosystems services (Triticum aestivum L.) in Khorasan. Journal of Agroecology 8: 612- 627. (In Persian with English Summary)
Koochakvar, M., Noori, M., Egilmez, G., and Tatari, O. 2014. Stochastic decision modeling for sustainable pavement designs. The International Journal of Life Cycle Assessment 19(6): 1185-1199.
Lin, H.C., and Fukushima, Y. 2016. Rice cultivation methods and their sustainability aspects: organic and conventional rice production in industrialized tropical monsoon Asia with a dual cropping system. Sustainability 8: 529.
Liu, C., Zheng, X., Zhou, Z., Han, S., Wang, Y., Wang, K., and Yang, Z. 2010. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil 332: 123-134.
Meier, M.S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., and Stolze, M. 2015. Environmental impacts of organic and conventional agricultural products–are the differences captured by life cycle assessment? Journal of Environmental Management 149: 193-208.
Meisterling, K., Samaras, C., and Schweizer, V. 2009. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production 17: 222-230.
Mirhaji, H., Khojastepur, M., Abbaspurfard, M., and Mahdavi Shahri, M. 2012. Environmental impact assessment sugar beet production using life cycle assessment (Case study: South Khorasan province). Journal of Agroecology 4: 112-120. (In Persian with English Summary)
Mirhaji, H., Khojastepur, M., Abbaspurfard, M., and Mahdavi Shahri, M. 2013. Environmental impact evaluation wheat production in Iran Marvdasht. Journal of Natural Environment, Natural Resources 66: 232-223. (In Persian with English Summary)
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S. 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 30: 724-733.
Mouron, P., Nemecek, T., Scholz, R. W., and Weber, O. 2006. Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agriculture, Ecosystems and Environment 114: 311-322.
National Institude of Statistic. 2012. Report on Economic, Social, Cultural, Golestan Province. http://www.amar.org.ir. (In Persian)
Nikkhah, A., Taheri rad, A., Khojastepur, M., Emadi, B., and Peyman, H. 2013. Environmental impact peanut production (Arachis hypogaea L.) in Astaneh Ashrafieh, Gilan Province. Journal of Agroecology 6: 373-382. (In Persian with English Summary)
Nikkhah, A., Emadi, B., Soltanali, H., Firouzi, S., Rosentrater, K.A., and Allahyari, M.S. 2016. Integration of life cycle assessment and Cobb-Douglas modeling for the environmental assessment of kiwifruit in Iran. Journal of Cleaner Production 137: 843-849.
Noori, M., Kucukvar, M., and Tatari, O. 2015. A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. International Journal of Sustainable Energy 34: 629-644.
Pang, M., Zhang, L., Wang, C., and Liu, G. 2015. Environmental life cycle assessment of a small hydropower plant in China. The International Journal of Life Cycle Assessment 20: 796-806.
Payraudeau, S., and van der Werf, H.M. 2005. Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems and Environment 107: 1-19.
Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., and Shiina, T. 2009. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering 90: 1-10.
Sherwani, A.F., and Usmani, J.A. 2010. Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews 14: 540-544.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133: 247-266.
Soltani, A., Barzgar, A., Koockeki, A., Zinali, A., Ghaemi, A., and Hajar pur, A. 2015. Life Cycle Assessment (LCA) of sugar beet production in Khorasan in different systems. Journal of Crop Production 1: 42-62. (In Persian with English Summary)
Suleiman, R.A., and Rosentrater, K.A. 2014. Techno-economic analysis (TEA) and life cycle assessment (LCA) of maize storage in developing countries. 2014 Montreal, Quebec Canada July 13–July 16, 2014 (p. 1). American Society of Agricultural and Biological Engineers.
Thanawong, K., Perret, S.R., and Basset-Mens, C. 2014. Eco-efficiency of paddy rice production in Northeastern Thailand: a comparison of rain-fed and irrigated cropping systems. Journal of Cleaner Production 73: 204-217.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671-677.
Tilman, D., Socolow, R., Foley, J.A., Hill, J., Larson, E., Lynd, L., and Williams, R. 2009. Beneficial biofuels-the food, energy, and environment trilemma. Science 325: 270-271.
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85: 101-119.
Ullah, A., Perret, S. R., Gheewala, S. H., and Soni, P. 2016. Eco-efficiency of cotton-cropping systems in Pakistan: an integrated approach of life cycle assessment and data envelopment analysis. Journal of Cleaner Production 134: 623-632.
Veisi, H., Heidari, G., and Sohrabi, Y. 2015. The effect of two species of mycorrhizal fungi and different levels of humic acid and fertilizers on yield and (Helianthus annuus L.) yield components of sunflower. Journal of Agroecology 8: 567-582. (In Persian with English Summary)
Wang, M., Wu, W., Liu, W., and Bao, Y. 2007. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. The International Journal of Sustainable Development and World Ecology 14: 400-407.
Wang, M., Xia, X., Zhang, Q., and Liu, J. 2010. Life cycle assessment of a rice production system in Taihu region, China. International Journal of Sustainable Development and World Ecology 17: 157-161.
Xia, Y., and Yan, X. 2011. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates. Biogeosciences 8: 3159-3168.
Yang, S.S., Lai, C.M., Chang, H.L., Chang, E.H., and Wei, C.B. 2009. Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renewable Energy 34: 1916-1922.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., and Crowley, D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139: 469-475.
You, H., and Zhang, X. 2016. Ecoefficiency of Intensive Agricultural Production and Its Influencing Factors in China: An Application of DEA-Tobit Analysis. Discrete Dynamics in Nature and Society.
CAPTCHA Image