مقایسه اثرات زیست محیطی نظام‏های تولید برنج (Oryza sativa L.) در الگوهای کشت اول و دوم با روش ارزیابی چرخۀ حیات (مطالعه موردی: شهرستان ساری)

نوع مقاله : علمی - پژوهشی

نویسنده

گروه زیست فناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

ارزیابی چرخه حیات (LCA) یکی از توسعه­یافته­ترین و قابل قبول­ترین ابزارهای جهانی برای مقایسه اثرات زیست محیطی فرآورده­ها و خدمات است که اثرات زیست محیطی و پتانسیل تأثیر یک فرآورده را از  تولید تا مصرف مطالعه و ارزیابی می­کند. برنج (Oryza sativa L.) یکی از مهمترین محصولات زراعی است. هدف این مطالعه تعیین اثرات زیست محیطی تولید برنج در روش کشت اول و دوم در شهرستان ساری با استفاده از ارزیابی چرخه حیات بود. بدین منظور، میانگین نهاده­های مصرفی طی سال 1393 به ازای یک هکتار تعیین شد. اطلاعات از 105 کشاورز برنج­کار از طریق مصاحبه با استفاده از پرسشنامه جمع­آوری شد. LCA بر اساس روش ارائه شده در ایزو 14044 در چهار گام تعریف اهداف و حوزه عمل مطالعه، ممیزی چرخه حیات ، ارزیابی تأثیر چرخه حیات و تلفیق و تفسیر نتایج محاسبه گردید. پتانسیل گرمایش جهانی، اسیدی شدن و اوتریفیکاسیون در محیط­های خشکی و آبی به عنوان سه گروه تأثیر مهم مدنظر قرار گرفتند. واحد کارکردی نظام­های تولید برنج معادل یک تن شلتوک در نظر گرفته شد. نتایج نشان داد که بیشترین پتانسیل گرمایش جهانی برنج در مقایسه الگوهای کشت مربوط به کشت دوم با 36/840 واحد معادل کیلوگرم CO2 به ازای یک تن شلتوک بود. در الگوی کشت دوم، میزان انتشار انواع گازهای گلخانه­ای شامل CO2، CH4 و N2O به ترتیب برابر با 82/402، 85/0 و 70/436 معادل کیلوگرم CO2 به ازای یک تن شلتوک تعیین شد. در الگوی کشت دوم میزان انتشار انواع آلاینده­ها در گروه تأثیر اسیدی شدن شامل NH3، NOx و SO2 به ترتیب برابر با 721/0، 225/0 و 541/0 واحد معادل کیلوگرم SO2 به ازای یک تن شلتوک بود. بالاترین پتانسیل گروه تأثیر اوتریفیکاسیون در بوم­نظام­های آبی و خشکی در الگوی کشت دوم برابر با 07/2 واحد معادل کیلوگرم PO4 به ازای یک تن شلتوک و 48/2 واحد معادل کیلوگرم NOx به ازای یک تن شلتوک محاسبه شد. مجموع شاخص زیست محیطی برنج در الگوی کشت دوم برابر با 39/0 EcoX به ازای یک تن شلتوک بدست آمد. بنابراین، می­توان بهره­گیری از اصول اکولوژیک نظیر کاهش خاکورزی و مصرف کودهای آلی را به عنوان راهکارهایی پایدار در مدیریت مزارع برنج به ویژه در الگوی کشت دوم به منظور کاهش اثرات زیست­محیطی مدنظر قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Environmental Impacts for Rice (Oryza sativa L.) Agroecosystems in the First and Second Planting Patters by using Life Cycle Assessment (Case Study: Sari County)

نویسنده [English]

  • Abdollah Mollafilabi
Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده [English]

Introduction
Life Cycle Assessment (LCA) is the most developed and the worldwide accepted tool for environmental comparison of products and services. Environmental Life Cycle Assessments (LCA) studies the environmental aspects and potential impacts of a product from ‘cradle-to-grave’ (Brentrup et al., 2004b).  Compared to other environmental impact assessment methods, LCA incorporates all the various stages of an agricultural production supply chain. This method is the only environmental assessment methodology which has been standardized. Life cycle assessment (LCA) is a methodology to assess all environmental impacts associated within a product/service by a accounting and evaluating its resource consumption and emission to environment (Nemecek et al., 2011).
Rice (Oryza sativa L.) is one of the most important crops (Chabra et al., 2006). The aim of this study was to determine environmental impacts of rice production systems in the first and second planting patterns by using Life Cycle Assessment.
  
Material and Methods
This study evaluated the environmental impacts of rice production systems in the first and second planting patterns by using life cycle assessment (LCA) methodology, mean consumed inputs per one hectare in rice agroecosystems of Sari province were determined during 2014. The data were collected from 105 paddy farmers by interviewing the farmers using questionnaire. Four steps including goal definition and scoping (D & S), inventory analysis (IA), life cycle impact assessment (LCIA) and integration & interpretation (I & I) were considered based on ISO (International Organization for Standardization) 14040 methods. Global warming, acidification and aquatic and terrestrial eutrophication were considered as three important impact categories. Functional unit of rice agroecosystems was considered as one tone paddy. Cronbach's alpha coefficient was calculated as a tool for the reliability assessment.
 
Results and discussion
Cronbach's alpha coefficient for questionnaire was calculated equal to α=%82. The results showed that the highest global warming potential between two cropping patterns was related to the second pattern with 840.36 kg CO2-equiv. one ton paddy. In the second planting pattern, pollutant emissions in global warming category CO2, CH4 and N2O calculated 402.82, 0.85 and 436.70 kg CO2-equiv. one ton paddy per  ha-1, respectively. In the second planting pattern, pollutant emissions in acidification category such as NH3, NOx and SO2 were computed 0.721, 0.225 and 0.541 kg SO2-equiv. one ton paddy per ha-1, respectively. The maximum eutrophication potential in aquatic and terrestrial environments was belonged to the second planting pattern with 2.07 kg PO4-equiv. one ton paddy per ha and 2.48 kg NOx-equiv. one ton paddy per ha -1, respectively. The maximum environmental indicator for rice production systems in the second planting pattern were computed 0.39 EcoX one ton paddy.
 
Conclusion     
LCA is an appropriate method to quantify the impact of utilized agricultural inputs and different managements on environment. The highest environmental impacts of rice production systems in the first and second planting patterns by using life cycle assessment (LCA) methodology was related to aquatic eutrophication category. Therefore, it can be concluded that applying ecological principles such as reduced tillage and organic fertilizer as sustainable approaches were considered for management of rice agroecosystems especially in the second planting pattern.

کلیدواژه‌ها [English]

  • Environmental impact
  • Ecological principles
  • Aquatic eutrophication
  • Global warming
Barker-Reid, F., Gates, W.P., Wilson, K., Baigent, R., Galbally, I.E., Meyer, C.P., Weeks, I.A., and Eckard, R.J. 2005. Soil nitrous oxide emission from rainfed wheat in SE Australia. In: A. van Amsted (Ed.). Non-CO2 greenhouse gases (NCGG-4). Utrecht, the Netherlands: Mill Press.
Barton, L., Kiese, R., Gatter, D., Butterbach-bahl, K., Buck, R., Hinz, C., and Murphy, D. 2008. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biology 14: 177-192.
Biswas, W.K., Barton, L., and Carter, D. 2008. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water Environmental Journal 22: 206-216.
Bouwman, A.F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: A.F. Bouwman (Eds.), Soils and the greenhouse effect (pp. 61-127). Chichester: Wiley.
Braschkat, J., Patyk, A., Quirin, M., and Reinhardt, G.A. 2003. Life cycle assessment of bread production–a comparison of eight different scenarios. In: Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector, October 6-8, Bygholm, Denmark. p. 9-16.
Brentrup, F., Kusters, J., Kuhlmann, H., and Lammel, J. 2001. Application of the life cycle assessment methodology to agricultural production: an example of sugar beet production with different forms of nitrogen fertilisers. European Journal of Agronomy 14: 221-233.
Brentrup, F., Kusters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impacts assessment of agricultural production systems using the life cycle assessment methodology, I. Theorical concept of a LCA method tailored to crop production. European Journal of Agronomy 20: 247-264.
Brentrup, F., Kusters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impacts assessment of agricultural production systems using the life cycle assessment (LCA) methodology, II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy 20: 265-279.
Chabra, D., Kashani Nezhad, M., and Rafiee, S.H. 2006. Comparison of the contents of waste in different drying rice. Proceedings of the First National Conference on Rice. 5-4 December, Amol. (In Persian)
Charles, R., Jolliet, O., Gillard, G., and Pellet, D. 2006. Environmental analysis of intensity level in wheat production using life cycle assessment. Agriculture, Ecosystems and Environment 113: 216-225.
Cronbach, L.J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16(3): 297-334.
Crutzen, P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: C.C. Delwiche (Ed.), Denitrification, nitrification, and atmospheric nitrous oxide (17-44 pp.). New York: Wiley.
Dastan, S., Soltani, A., Noor Mohammadi, G.H., and Madani, H. 2013. Global warming potential of carbon dioxide emissions and energy consumption in the paddy planting. Journal of Agricultural Ecology 6(4): 823-835. (In Persian with English Summary)
Esmaielpour, B., Khorramdel, S., and Amin Ghafori, A. 2015. Study of Environmental impacts for potato Agroecosystems of Iran based on nitrogen fertilizer by using Life Cycle Assessment (LCA) methodology. Electronic Journal of Crop Production 8(3): 199-224. (In Persian with English Summary)
Fageria, N.K. 2009. The use of nutrients in plants. Taylor & Francis Group, CRC Press 430 pp.
Fallahpour, F., Aminghafouri, A., Ghalegolab Behbahani, A., and Bannayan, M. 2012. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability 14: 979-992.
FAO. 2003. World Agriculture: Towards 2015/2030. An FAO Perspective. http://www.fao.org
Finkbeiner, M., Inaba, A., Tan, R.B.H., Christiansen, K., and Klüppel, H.J. 2006. The new international standards for life cycle assessment: ISO14040 and ISO14044. International Journal of Life Cycle Assessment 11(2): 80-85.
Giampietro, M., Cerretelli, G., and Pimentel, D. 1992. Energy analysis of agricultural ecosystem management: human return and sustainability. Agriculture, Ecosystems and Environment 38: 219-244.
Guinee, J.B. 1996. Data for the Normalization Step within Life Cycle Assessment of Products. CML Paper No. 14 (Revised version). CML (Centre of Environmental Science), Leiden.
Guinee, J.B. 2001. Life cycle assessment: an operational guide to the ISO standards. Centre of Environmental Science, Leiden University, Leiden.
Haas, G., Wetterich, F., and Kopke, U. 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment 83: 43-53.
Hayashi, K. 2005. Practical implications of functional units in life cycle assessment for horticulture: Intensiveness and environmental impacts. LCM2005: Innovation by Life Cycle Management: Barcelona, Spain 1: 368-371
Hospido, A., Moreira, M.T., and Feijoo, G. 2003. Simplified life cycle assessment of Galician milk production. International Dairy Journal 13(10): 783-796.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Cleaner Production 18: 336-345.
ISO (International Organization for Standardization). 2006. ISO 14040: 2006 (E) Environmental Management – Life Cycle Assessment– Principles and Framework.
Khorramdel, S., Ghorbani, R., and Amin Ghafori, A. 2015. Comparison of environmental impacts for dryland and irrigated barley Agroecosystems of Iran by using Life Cycle Assessment (LCA) methodology. Journal of Plant Production 22(1): 243-364. (In Persian with English Summary)
Khorramdel, S., Rezvani Moghaddam, P., and Amin Ghafori, A. 2013. Evaluation of environmental impacts for wheat Agroecosystems of Iran by using Life Cycle Assessment methodology. Cereal Research 4(1): 27-44. (In Persian with English Summary)
Khoshnevisan, B., Rafiei, S., Omid, M., Keyhani, A., and Movahedi, M. 2013. Assessing of energy indices and environmental impacts of potato production (Case study: Fereydoonshahr region, Isfahan province). Iranian Journal of Biosystems and Engineering 44(1): 57-66. (In Persian with English Summary)
Lindeijer, E. 1996. Normalisation and valuation. In: Udo de Haes, H.A. (Eds.), Towards a Methodology for Life Cycle Impact Assessment, SETAC, Brussels.
Mansoori, H., Rezvani Moghaddam, P., and Moradi, R. 2012. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran. Frontiers in Energy 6(4): 341-350.
Marini, M., Senhaji, F., and Pimentel, D. 2002. Energy analysis of sugar beet production under traditional and intensive farming systems and impact on sustainable agriculture in Morocco. Journal of Sustainable Agriculture 20: 5-27.
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M.T., Keyhani, A., Mousavi-Avval, S.H., and Hermansen, J.E. 2013. Potential greenhouse gas emission reductions in soybean farming: a combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production 54: 89-100.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A.R., Dalgaard, T., Knudsen, M.T., Nguyen, T.L.T., Borek, R., and Hermanse, J.E. 2015. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production 106: 521-532.
Mollafilabi, A., Khorramdel, S., Amin Ghafori, A., and Hosseini, M. 2014. Evaluation of environmental impacts for saffron agroecosystems of Khorasan by using Life Cycle Assessment (LCA). Journal of Saffron 2(2): 165-179. (In Persian with English Summary)
Monti, A., Fazio, S., and Venturi, G. 2009. Cradle-to-farm gate life cycle assessment in perennial energy crops. Europ. Journal of Agronomy 31: 77-84.
Nikkhah, A., Taheri-Rad, A.R., Khojastehpour, M., Emadi, B., and Khorramdel, S. 2015. Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production 92: 84-90.
Nemecek, T., Dubois, D., Huguenin-Elie, O., and Gaillard, G. 2011. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems 104: 217-232.
Nie, S.W., Gao, W.S., Chen, Y.Q., Sui, P., and Eneji, A.E. 2010. Use of life cycle assessment methodology for determining phytoremediation potentials of maize-based cropping systems in fields with nitrogen fertilizer over-dose. Journal of Cleaner Production 18: 1530-1534.
Payraudeau, S., and van der Werf, H.M.G. 2005. Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems and Environment 107: 1-19.
Peyman, M., Ruhi, R., and Alizadeh, R. 2005. Set in the traditional and semi-mechanized to produce energy. Journal of Agricultural Engineering 6(22): 67- 80. (In Persian with English Summary)
Riemersma, S., Little, J., Ontkean, G., and Moskal-Hebert, T. 2006. Phosphorus Sources and Sinks in Watersheds: A Review. Alberta Soil Phosphorus Limits Project.
Roy, P., Nei, D., Orikasa, T., Xu, Q., and Okadome, H. 2009. A review of cycle assessment (LCA) on some food products. Journal of Food Engineering 90: 1-10.
Russo, G., and De Lucia, B. 2008. Environmental evaluation by means of LCA regarding the ornamental nursery production in rose and sowbread greenhouse cultivation. Acta Horticulturae 801: 1597-1604.
Schröder, J.J., Aarts, H.F.M., ten Berge, H.F.M., van Keulen, H., and Neeteson, J.J. 2003. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy 20: 33-44.
Sheng-Wei, N., Wang-Sheng, G., Yuan-Quan, C., and Peng-Sui, A. 2010. Use of life cycle assessment methodology for determining phytoremediation potentials of maize-based cropping systems in fields with nitrogen fertilizer. Journal of Cleaner Production 18: 1530-1534.
Snedecor, G.W., and Cochran, W.G. 1980. Statistical Methods. Iowa State University Press.
Whalen, J.K., and Chang, C. 2002. Phosphorus sorption capacities of calcareous soils receiving cattle manure applications for 25 years. Communication in Soil Science and Plant Analysis 33: 1011-1026.
Zolfi Bavariani, M., and Nouruzi, M. 2010. Effect of organic matter on residual phosphorus recovering in a calcareous soil. JWSS- Isfahan University of Technology 14(52): 87-98. (In Persian with English Summary)
CAPTCHA Image