بررسی تأثیر پرایمینگ بذر و نشاءکاری بر برخی صفات مورفولوژیک، عملکرد و اجزای عملکرد ذرت فوق‏ شیرین (Zea mays L. var. saccharata)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشگاه فردوسی مشهد

چکیده

یکی از مشکلات کشت ذرت شیرین (Zea mays L. var. saccharata) سبز شدن ضعیف بذرهای این گیاه می باشد که این امر سبب عدم دستیابی به تراکم مطلوب و عدم یکنواختی پراکنش بوته ها می شود و باعث کاهش کارایی مصرف نهاده ها می شود. به نظر می رسد بتوان از پرایمینگ بذر و نشاکاری در جهت رفع مشکل بد سبزی ذرت شیرین استفاده نمود. به منظور بررسی اثر پرایمینگ بذر و نشاکاری بر برخی صفات مورفولوژیک، اجزای عملکرد و عملکرد ذرت فوق شیرین آزمایشی در سه بخش آزمایشگاهی (در آزمایشگاه بذر دانشکده کشاورزی دانشگاه فردوسی)، گلخانه ای و مزرعه ای در مزرعه تحقیقاتی دانشگاه فردوسی مشهد که بخش آزمایشگاهی و گلخانه ای در سال 1392 در قالب طرح کاملاً تصادفی با چهار تکرار و بخش مزرعه ای در سال زراعی 92-1391 به صورت فاکتوریل در قالب طرح پایه بلوک کامل تصادفی با سه تکرار انجام شد. فاکتورهای مورد مطالعه در مزرعه شامل پرایمینگ بذر در چهار سطح (شاهد، هیدروپرایمینگ پلی‏اتیلن‏گلایکول 4/0- مگاپاسکال و سولفات سدیم 1/0 درصد) و نحوه کاشت در چهار سطح (کشت مستقیم در تاریخ 15 خرداد، کشت مستقیم در تاریخ پنج تیر، نشاکاری در سلول 25 سی سی و نشاکاری در سلول 100 سی سی) ‏بود. صفات تعداد بوته استقرار یافته، ارتفاع بوته، تعداد برگ در بوته، تعداد برگ بالای بلال، طول بلال، تعداد ردیف دانه، تعداد دانه در ردیف، وزن هزار دانه و عملکرد دانه مورد بررسی قرار گرفتند. نتایج نشان داد که پرایمینگ بذر در سطح مزرعه اثر معنی‏داری بر صفات مورد بررسی نداشت حال آن‏که فاکتور نحوه کاشت بر تمام صفات مورد بررسی دارای تأثیر معنی‏دار بود. اثرات متقابل تأثیر معنی‌داری بر صفات مورد مطالعه به غیر از صفت طول بلال نداشت. عملکرد دانه در تیمارهای نشاکاری بالاتر از کشت مستقیم بود به‏ نحوی که بالاترین عملکرد از کشت درون سینی با میزان 11/10 تن در هکتار به دست آمد و پایین‏ترین عملکرد مربوط به تیمار کشت مستقیم بذر در پنج تیر ماه با میزان 5/6 تن در هکتار بود. نتایج نشان داد تعداد بوته استقرار یافته بالاترین همبستگی را با عملکرد دانه داشت (r=0.64**). به طور کلی تعداد بوته استقرار یافته در تیمارهای نشاکاری بالاتر از کشت مستقیم بود. بنابراین می توان چنین نتیجه گرفت که با نشاکاری این گیاه مشکل بد سبزی بر طرف شده و در نهایت افزایش عملکرد را در پی خواهد داشت. می توان نشاکاری را به عنوان روشی مناسب برای افزایش عملکرد و در نهایت افزایش کارایی مصرف نهاده ها در ذرت شیرین معرفی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Seed Priming and Transplanting on Morphological Characteristics, Yield and Yield Components of SuperSweet Corn

نویسندگان [English]

  • Matin Haghighi Khah 1
  • Mohammad Khaje Hosseini 1
  • Mehdi Nassiri Mahallati 1
  • saeed Khavari Khorasani 2
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
چکیده [English]

Introduction
Corn (Zea mays L.) is the third most important cereal crop in the world after wheat and rice (Lashkari et al., 2011). Corn production has been extended in to the whole world during the course of the last century due to its compatibility. It has more diversity compare to other cereal. Many corn types are cultivated, including field corn, ornamental corn, popcorn, sweet corn and several different supersweet corns. Sweet corn, considered a vegetable, is a special type of corn with particular characteristics, such as sweet taste, thin pericarp and endosperm with delicate texture, and high nutritional value. It is destined exclusively for human consumption, in fresh form or in processed foods, whereas the straw can be used for silage after harvest (Santos et al., 2014). Sweet corn seeds germinate slowly and exhibit poor seedling vigour. Poor germination in sweet corn has been attributed to low seed vigour and susceptibility to seed and soilborne diseases (Ratin et al., 2006). Seed priming is the one of efficient method to improve germination and emergence. In addition, transplanting provides optimal environmental conditions for seed germination and avoids planting seeds in disease-contaminated soil (Khalid et al., 2012).
Materials and methods
To investigate the effect of seed priming and transplanting on morphological characteristics, yield and yield components of supersweet corn a series of greenhouse and field experiments were conducted in a factorial based design on a randomized complete block in 2013. This experiment was conducted in the greenhouse to determine the best seed priming treatments. The treatments were hydro priming, Poly ethylene glycol (6000) -0.4 and -0.8 MPa, Sodium Sulphate 0.1 and 0.5%, Zinc Sulphate 1 and 0.5%, Copper Sulphate 0.1 and 0.5% and Control for 36 hours. After that the seeds washed by distillated water and dried back in laboratory conditions. Then treated seeds were sown in trays that contained by cocopeatand vermicompost. The emerged seeds were counted daily for fourteen days. Based on mean emergence time (MET) and percentages of emergence, the best priming treatments were selected to prime the seeds for transplant production and direct sowing in the field experiment. The factors for field experiment included four treatments of seed priming (hydropriming, polyethylene glycol (PEG) -0.4 MPa, sodium sulfate 0.1% and control) and planting methods in four levels (transplanting the seedlings grown in two different cell sizes (25 ml and 100 ml) and two direct seeding dates (the first one was at the time of planting seeds in the trays (5th June) and the second was at the time of transplanting to the field (26th June)). The determined parameters were established plants, plant height, number of leave, number of leave above ear, ear length, number of rows per ear, number of kernel per row, 1000 seeds weight and grain yield.
Results and discussion
The results of greenhouse experiment showed that the highest and the lowest amount of mean emergence time related to control and Sodium Sulphate 0.1% respectively. The highest percent of emerged plant (94%) was observed in the hydropriming treatment while there was no significant difference between hydropriming, Sodium Sulphate 0.1 % and Polyethylen Glycol -0.4 MPa. Therefore, hydropriming, Sodium Sulphate 0.1 % and Polyethylen Glycol -0.4 MPa alongside control were used to prime the seeds sowing in order to produce transplants for the field experiment for further investigation. The results of the field experiment showed that seed priming had no effect on the studied traits in the field. Planting methods had significant effect on crop establishment, plant height, number of leave, number of leave above ear, ear length, number of rows per ear, number of kernel per row and the grain yield. The highest and lowest grain yield were recorded for transplanting in 25 CC cell sizes (10.11 t.ha-1) and direct seeding in 26th June (6.5 t.ha-1) respectively. The result showed there was a high correlation (r =0.64**) between number of established plants and grain yield.
Conclusion
Priming was not useful in field, but farmers could use seed priming to produce seedlings. It seems that the most important benefit of transplanting is obtaining high value of plant establishment in order to achieve optimum plant density.

کلیدواژه‌ها [English]

  • Hydropriming
  • Emergence
  • Osmopriming
  • Planting method
Aboutalebian, M.A., Zare Ekbatani, G., and Sepehri, A. 2012. Effects of on-farm seed priming with zinc sulfate and urea solutions on emergence properties, yield and yield components of three rainfed wheat cultivars. Annals of Bioligical Research 3(10): 4790-4796.
Afzal, I., Ahmad, N., Basra, S., Ahmad, R., and Iqbal, A. 2002. Effect of different seed vigour enhancement techniques on hybrid maize (Zea mays L.). Pakistan Journal of Agricultural Sciences 39: 109-112.
Ashofteh, M., Khavari Khorasani, S., Shojaei, H., Dadresan, M., Mostafavi, K., and Golbashy, M. 2011. A study on effects of planting dates on growth and yield of 18 corn hybrids (Zea mays L.). American Journal of Experimental Agriculture 1(3): 110-120.
Ashraf, M., and Foolad, M.R. 2005 Pre‐sowing seed treatment-a shotgun Approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions, in: L.S. Donald (Ed.), Advances in Agronomy, 88: 223-271.
Bodsworth, S., and Bewley, J.D. 1981. Osmotic priming of seeds of crop species with polyethylene glycol as a means of enhancing early and synchronous germination at cool temperatures. Canadian Journal of Botany 59: 672-676.
Bradford, K.J. 1995. Water relations in seed germination. In: Journal of Kigel, Seed Development and Germination 1: 351-396.
David, W.S. 2015. Growing sweet corn in home gardens. The University of Tennessee.https://extension.tennessee.edu/ publications/Documents/SP291-E.
Demir, I., and Mavi, K. 2004. The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Scientia Horticulturae 97: 229-237.
Di Benedetto, A., and Rattin, J. 2008. Transplant in sweet maize: A tool for improving productivity. American Journal of Plant Science and Biotechnology 2(2): 96-108.
Di Benedetto, A., Molinari, J., and Rattin, J. 2006. The effect of transplant in sweet maize (Zea mays). Container root restriction. International Journal of Agricultural Research 1: 555-563.
Dragan, Z., and Kackjan, N. 2008. Corn salad (Valerinella olitoria L.) yield response to cell size of plug trays. Acta Agriculture Slovenica 91(1): 59-66.
Eskandarnejad, S., Khavari Khorasani, S., Bakhtiari, S., and Heidaria, A. 2013. Effect of row spacing and plant density on yield and yield components of sweet corn (Zea mays L.) varieties. Advanced Crop Science 3(1): 81-88.
Fanadzo, M., Chiduza, S., and Mnkeni, P.N.S. 2010. Comparative performance of direct seeding and transplanting green maize under farmer management in small scale irrigation: A case study of Zanyokwe, Estern Cape, South Africa. African Journal of Agricultural Research 5(7): 524-531.
Farooq, M., Basra, S., Afzal, I., and Khaliq, A. 2006. Optimization of hydropriming techniques for rice seed invigoration. Seed Science and Technology 34: 507-512.
Farooq, M., Basra, S., Tabassum, R., and Afzal, I. 2006. Enhancing the performance of direct seeded fine rice by seed priming. Plant Production Science 9: 446-456.
Hadas, A. 1976. Water uptake and germination of leguminous seeds under changing external water potential in osmotic solutions. Journal of Experimental Botany 27: 480-489.
International Seed Testing Assocciation. 2009. International rules for seed testing association 33: 335-339.
Kaukis, K., and Davis, D.W. 1998. Sweet corn breeding. Breeding Vegetable Crops 475-519.
Khajeh-Hosseini, M., Haghighi Khah, M., and Gheshm, F. 2016. Cotton transplanting, approach of saving water in Iran. Iran's Agriculture Jihad, Mashhad, Iran 218 pp. (In Persian)
Khajeh-Hosseini, M., Lomholt, A., and Matthews, S. 2009. Mean germination time in the laboratory estimates the relative vigor and field performance of commercial seed lots of maize (Zea mays L.). Seed Science and Technology 37: 446-456.
Khalid, E., Hamed, A.E., Elwan, M., and Shaban, W. 2012. Enhanced sweet corn propagation: Studies on transplanting feasibility and seed priming. Vegtable Research Bulletin 75: 31-50.
Khehra, A., Brar, H., Sharma, R., Dhillon, B., and Malhotra, V. 1990. Transplanting of maize during the winter in India. Agronomy Journal 82: 41-47.
Lashkari, M., Madani, H., Ardakani, M.R., Golzardi, F., and Zargari, K. 2011. Effect of plant density on yield and yield components of different Corn (Zea mays L.) hybrids. Journal of Agricultural and Environmental Science 10(3): 450-457.
Manzari Tavakoli, A., and Khajeh-Hosseini, M. 2015. Evolution of effects of volume size and seedbed in tray on transplant characteristics and yield of sweet corn. MSc thesis. Ferdowsi university of Mashhad, Mashhad, Iran (In Persian)
McDonald, M.B., Sullivan, J., and Lauer, M.J. 1994. The pathway of water uptake in maize seeds. Seed Science and Technology 22: 79-90.
McDonald, M.B. 1998. Seed deterioration: physiology, repair and assessment. Seed Science and Technology 27: 177-237.
Menasha, S.R., and Tignor, M.E. 2004. Plug tray cell volume effect on sweet corn transplant root architecture and biomass accumulation. Horticultural Science 39(4): 865-875.
Mokhtarpur, H., Mosavat, A., Feyzbakhh, M., and Saberi, A. 2008. Effects of planting date and density on sweet corn yield. Journal of Crop Production 1(1): 101-113. (In Persian with English Summary)
Murray, G.A. 1990. Priming sweet corn seed to improve emergence under cool conditions. Horticulture Science 25(2): 231.
Murungu, F., Nyamugafata, P., Chiduza, C., Clark, L., and Whalley, W. 2003. Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.). Soil and Tillage Research 74: 161-168.
Nour-Mohamadi, G., Siadat, A., and Kashani, A. 1997. Agronomy, Cereal Crops. Shahid Chamran University Publication, Ahvaz, Iran 446 pp. (In Persian)
Omidi, H., Soroushzadeh, A., Salehi, A., and Ghezeli, F.D. 2005. Rapeseed germination as affected by osmopriming pretreatment. Iranian Journal Agriculture Science Technology 19: 125-136. (In Persian)
Rattin, J., Di Benedetto, A., and Gomatti, T. 2006. The effects of transplant in sweet maize (Zea mays L.) growth and yield. Journal of Agricultural Research 1(1): 58-67.
Schemidt, D.H., and Tracy, W.F. 1988. Endosperm type, inbred background and leakage of seed electrolytes during imbibition in sweet corn. Journal of the American Society for Horticultural Science 113: 269-272.
Singh, A., Aggarwal, N., Singh Aulakh, G., and Hundal, R.K. 2012. Ways to maximize the water use efficiency in field crops- A review. Greener Journal of Agricultural Sciences 2(4): 108-129.
Spandana, P. 2012. Response of sweet corn hybrid to varying plant densities and nitrogen levels. African Journal of Agricultural Research 7(46): 6158-6166.
Waligora, H. 1997. The influence of sowing terms on vegetation period and morphological characters of sweet corn. Prace Zarkresu Nauk Rolniczych 83: 135-40.
Wann, E.V. 1986. Leaching of metabolites during imbibition of sweet corn seed of different endosperm genotypes. Crop Science 26(4): 731-733.
Williams, W.A., Loomis, R.S., and Lepley, C.R. 1965. Vegetative growth of corn as affected by population density. I: productivity in relation to interception of solar radiation. Crop Science 5: 211-214.
Xiao, C., Wang, X., Xia, J., and Liu, G. 2010. The effect of temperature, water level and burial depth on seed germination of Myriophyllum spicatum and Potamogeton malaianus. Aquatic Botany 92: 28-32.
CAPTCHA Image