شبیه‌سازی عملکرد و بهره‌وری آب در چغندرقند (Beta vulgaris L.) بهاره در پاسخ به تیمارهای تاریخ کشت و آبیاری با استفاده از مدل SUCROS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه کشاورزی اکولوژیک، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، ایران.

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، ایران

چکیده

پژوهش حاضر، عملکرد ریشه و بهره‌وری آب گیاه چغندرقند (Beta vulgaris L.) در پاسخ به تیمارهای تاریخ کشت (یک اسفند، یک فروردین و یک اردیبهشت) و دور آبیاری (10 روز، 12 روز، 14 روز و همچنین یک تیمار دور آبیاری با توجه به نیاز آبی محصول در طول فصل رشد در شرایط عدم محدودیت آبی) در شهرستان‌های نیشابور، قوچان، تربت جام و سبزوار را ارزیابی کرد. از مدل SUCROS و داده‌های بلندمدت هواشناسی جهت برآورد رشد و نمو و عملکرد استفاده شد. روند تغییرات نیاز روزانه گیاه و همچنین تغییرات آب خاک در تیمارهای مختلف در طول فصل رشد استخراج شدند و مورد تحلیل قرار گرفتند. نتایج به‌دست آمده نشان داد، بیشترین عملکرد چغندرقند (80/63 تن در هکتار) در شهرستان سبزوار با کشت این محصول در ابتدای اسفند و آبیاری آن با فاصله زمانی 10 روزه صورت گرفت، درحالی‌که در شهرستان‌های تربت جام، نیشابور و قوچان بیشترین عملکرد ریشه (به‌ترتیب 44/66، 38/109 و 15/112 تن در هکتار) با کشت در یک اسفند و تیمار آبیاری بر اساس نیاز آبی گیاه زراعی حاصل می‌گردد. به‌طور کلی، تغییر تاریخ کشت در مقایسه با تغییر دور آبیاری‌ می‌تواند تأثیر بیشتری در تولید و بهره‌وری آب چغندرقند داشته باشد. علاوه‌براین، در مناطق گرم‌تر مانند سبزوار و تربت جام بهتر است راهکارهای دیگر مانند کشت پاییزه چغندرقند نیز ارزیابی گردد. همچنین با توجه به‌ محدودیت منابع آبی، توصیه می‌شود که پژوهشگران تمرکز بیشتری بر روی افزایش بهره‌وری آب در کنار بهبود عملکرد گیاه زراعی در مقایسه با شرایط موجود در مزارع داشته باشند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Sugar Beet (Beta vulgaris L.) Root Yield and Water Productivity in Response to Different Sowing Date and Irrigation Treatments using SUCROS Model

نویسندگان [English]

  • Esmaeil Mohammadi-Ahmadmahmoudi 1
  • Sajjad Rahimi-Moghaddam 2
1 Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
2 Assistant Professor, Department of Production Engineering and Plant Genetics, Faculty of Agriculture and Natural Resources, Khorramabad, Iran
چکیده [English]

Introduction:
 Water is considered as one of the main factor driving agricultural activities. It is predicted more than 67% of the world's population will suffer from water shortages in their habitats that by 2050. Therefore, maximizing water efficiency is the best solution to deal with the problem. Water productivity is an important factor in evaluating the efficiency of irrigated and rainfed systems. Sugar beet is one of the strategic crops in Iran which its area under cultivation has been decreased in the last two decades, especially in Khorasan Razavi Province. The high water requirement of sugar beet and the problem of water shortage during spring and summer are the most important reasons for the decrease in the area under cultivation of this crop. Given the crisis in water supply for crop production, increasing water productivity in irrigated agroecosystems can be considered as a suitable strategy to increase the area under cultivation and yield of crops. In recent years, different studies have been conducted to increase the water productivity of different crops using simulation models.
Materials and methods:
 In this study, root yield and water productivity of sugar beet were evaluated in response to three different sowing date treatments (20 February, 21 March, and 21 April) and four irrigation interval treatments (10 days, 12 days, 14 days and treatment with model according to the crop water demand) in Neyshabur, Sabzevar, Quchan, and Torbat Jam locations. For this purpose, the SUCROS simulation model and long-term meteorological data were used to estimate the growth and production of sugar beet. In addition, the trend of sugar beet daily water demand as well as changes in soil water in different treatments during the growing season was extracted and analyzed.
Results and discussion:
 The results showed that the highest yield of sugar beet (63.80 t ha-1) was obtained in Sabzevar by sowing on 20 February and irrigation with 10 days intervals while in Torbat Jam, Neyshabur, and Quchan, the maximum root yield (66.44, 109.38 and 112.15 t ha-1, respectively) was achieved by sowing on 20 February and irrigation based on crop water demand.  In contrast, sowing sugar beet on 21 April with 14 days of irrigation intervals in all studied locations resulted in the lowest yield among different treatments. Water productivity comparison in different locations showed that in Sabzevar, Torbat Jam, and Neyshabur, the treatment of the 20 February sowing date and irrigation based on crop water demand resulted in maximum water productivity (4.08, 4.52, and 8.10 kg m-3, respectively) and in Quchan, the treatment of 20 February sowing date and 14 days irrigation interval with 7.70 kg m-3 led to the maximum water productivity. The results also indicated that in Sabzevar, the lowest water productivity was obtained by sowing sugar beet on 21 April and irrigation with 14 days intervals, and in Torbat Jam, Neyshabur and Quchan, the minimum water productivity was simulated by sowing date of 21 April and 10 days irrigation intervals. Evaluation of the relationship between the length of growth season (as a criterion of sowing date) with sugar beet yield and water productivity in all locations showed that there were significant relationships among these variables and the length of growth season at 1% of probability level, which indicated the importance of early cultivation in increasing the sugar beet production and water productivity in Razavi Khorasan Province.
Conclusion:
The findings of this study suggest that modifying the sowing date, in comparison to adjusting irrigation intervals, may have a more significant impact on enhancing sugar beet yield and water productivity. Additionally, in warmer locations like Sabzevar and Torbat Jam, exploring alternative options such as autumn sugar beet cultivation is advisable. In light of the constraints posed by limited water resources, it is recommended that researchers prioritize investigations into water productivity rather than solely focusing on maximizing crop yield.
Acknowledgments:
The authors are grateful to Dr. Reza Deihimfard from Shahid Beheshti University, Iran for providing valuable comments and his advice on methodology.

کلیدواژه‌ها [English]

  • Crop water requirement
  • Irrigation intervals
  • Khorasan Razavi Province
  • Modelling

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdolahian Noghabi, M., Alamoli, Z.R., Akbari, G.A., & Nouri, S.A.S. (2011). Effect of sever water stress on the morphologic, quantitative and qualitative characteristics of 20 sugar beet genotype. Iranian Journal of Field Crop Science, 42(3), 453–464. (In Persian with English Summary) https://dorl.net/dor/20.1001.1.20084811.1390.42.3.3.3
  2. Amiri, S.R. (2018). Determining the optimum sowing date of chickpea in Kermanshah province using modeling approach. Plant Ecophysiology, 10, 130-141. (In Persian with English Summary) https://dorl.net/dor/20.1001.1.20085958.1397.10.32.11.6
  3. Amiri, S.R., Deihimfard, R., & Soltani, A. (2016). A single supplementary irrigation can boost chickpea grain yield and water use efficiency in arid and semiarid conditions: A modeling study. Agronomy Journal, 108, 2406–2416. https://doi.org/10.2134/agronj2016.02.0087
  4. Anonymous, 2022. Report of the area, production and yield of crops in the crop year 2019-2020, Office of Statistics and Information Technology. (In Persian with English Summary)
  5. Chauhan, Y., Allard, S., Williams, R., Williams, B., Mundree, S., Chenu, K., & Rachaputi, N.C. (2017). Characterisation of chickpea cropping systems in Australia for major abiotic production constraints. Field Crops Research, 204, 120-134. https://doi.org/10.1016/j.fcr.2017.01.008
  6. Chenu, K., Deihimfard, R., & Chapman, S.C. (2013). Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt– spatial and temporal trends. New Phytologist, 198, 801–820. https://doi.org/10.1111/nph.12192
  7. Dehghanisanij, H., Ebrahimi, M., Rezaverdinejad, V., & Taghizadehghasab, A. (2020). Impact of changing irrigation method and planting spacing on water productivity, yield and application efficiency of sugar beet in Miandoab plain. Iranian Journal of Soil and Water Research, 51(8), 2125-2136.‏ https://doi.org/10.22059/ijswr.2020.300764.668575
  8. Deihimfard, R., & Rahimi-Moghaddam, S. (2015). Assessing spring and autumn cropping of sugar beet yield in Mashhad and Neyshabor, by a simulation model. Journal of Plant Production Research, 22(3), 157-180 (In Persian with English Summary) https://dorl.net/dor/20.1001.1.23222050.1394.22.3.7.8
  9. Deihimfard, R., Nassiri Mahallati, M., & Koocheki, A. (2011). SUCROSBEET: A simple model for simulating growth and development of sugar beet under potential and nitrogen-limited conditions. Journal of Agroecology, 2(1), 1-20. (In Persian with English Summary)
  10. Deihimfard, R., Rahimi-Moghaddam, S., & Chenu, K. (2019). Risk assessment of frost damage to sugar beet simulated under cold and semi-arid environments. International Journal of Biometeorology, 63(4), 511-521. https://doi.org/10.1007/s00484-019-01682-5
  11. Dunham, R.J. (1993). Water use requirements. In D.A. Cooke and R.K. Scott (Eds.). The sugar beet crop: science into practice. Chapman and Hall, London. p. 279–309.
  12. Ebrahimipak, N.A., & Ghalebi, S. (2014). Determination of evapotranspiration and crop coefficient of sugar beet using lysimeter and its comparison with experimental methods in Shahrekord, Iran. Journal of Sugar Beet, 30(1), 23-32. (In Persian with English Summary) https://doi.org/10.22092/jsb.2014.5854
  13. Emdad, M.R., & Tafteh, A. (2017). Evaluation of Aquacrop model for decreasing water stress effects due to different wheat planting date. Journal of Agronomy and Plant Breeding, 13(4), 75-83. (In Persian with English Summary)
  14. Fabeiro, C., Santa Olalla, M. Lopez, R., & Dominguez, A. (2003). Production and quality of sugar beet (Beta vulgaris) cultivated under controlled deficit irrigation in semi-arid climate. Agricultural Water Management, 62, 215–227. https://doi.org/10.1016/S0378-3774(03)00097-0
  15. Haghayeghi, S.A., Alizadeh, A., Ahmadi, M., Bannayan, M., & Ansari, H. (2015). Effect of irrigation regimes on crop water use efficiency of autumn sugar beets grown on the Mashhad plain. Journal of Agricultural Engineering Research, 16(3), 15-30. (In Persian with English Summary)
  16. Heydari Pour, R., Nassiri Mahallati, M., Koocheki, A., & Zarea Faze Abadi, A. (2014). The effects of different levels of irrigation and nitrogen fertilizer on productivity and efficiency in corn (Zea mays), sugar beet (Beta vulgaris L.) and sesame (Sesamum indicum L.). Journal of Agroecology, 6(2), 187-198. (In Persian with English Summary) https://doi.org/10.22067/jag.v6i2.39361
  17. Heydari Pour, R., Nassiri Mahallati, M., Koocheki, A., & Zarea Faze Abadi, A. (2015). Effects of irrigation and nitrogen application rates on yield and yield components of corn, sesame and sugar beet in Mashhad climatic condition. Iranian Journal of Field Crops Research, 13(1), 24-33. (In Persian with English Summary) https://doi.org/10.22067/gsc.v13i1.48312
  18. Jabro, J.D., Iversen, W.M., Evans, R.G., & Stevens, W.B. (2012). Water use and water productivity of sugarbeet, malt barley, and potato as affected by irrigation frequency. Agronomy Journal, 104, 1510-1516. https://doi.org/10.2134/agronj2012.0169
  19. Jabro, J.D., Stevens, W.B., Iverson, W.M., Evans, R.G., & Allen, B.L. (2014). Crop water productivity of sugarbeet as affected by tillage. Agronomy Journal, 106, 2280–2286. https://doi.org/10.2134/agronj14.0186
  20. Jaggard, K.W., Dewar, A.M., & Pidgeon, J.D. (1998). The relative effects of drought stress and virus yellows on the yield of sugar beet in the UK, 1980-1995. Journal of Agricultural Science, 130, 337-343. https://doi.org/10.1017/S0021859698005371
  21. Jalilian, A., Shirvani, A.R., Neamati, A., & Basati, J. (2001). Effects of deficit irrigation on the production and economy of sugar beet in Kermanshah region. Journal of Sugar Beet,17(1), 1-14. (In Persian with English Summary) https://doi.org/10.22092/jsb.2001.11560
  22. Javaheri, M.A., Najafinezhad, H., & Azad Shahraki, F. (2006). Study of autumn sowing of sugar beet in Orzouiee area (Kerman province). Pajouhesh and Sazandegi, 71, 85-93. (In Persian with English Summary)
  23. Jovzi, M., & Zare Abyaneh, H. (2016). Water productivity and water use efficiency indexes of Sugar beet under different levels of water and nitrogen fertilizer. Journal of Water and Soil Conservation, 22(5), 117-133. (In Persian with English Summary) https://dorl.net/dor/20.1001.1.23222069.1394.22.5.7.7
  24. Kamali, B., Ramezani Etedali, H., & Sotoodehnia, A. (2016). Determining appropriate time for rainfed lentil sowing and supplementary irrigation in Qazvin’s plain using AquaCrop model. Iranian Journal of Irrigation and Drainage, 5(10), 613-621. (In Persian with English Summary)
  25. Karimi, A., & Naderi, M. (2008). Different levels of irrigation and nitrogen effects on quantitative and qualitative yield and water use efficiency of Sugar beet. Journal of Agricultural Science and Technology, 22(1), 235-246. (In Persian with English Summary)
  26. Mirzaei, M.R., & Rezvani, S.M. (2012). Effect of deficit irrigation levels at four growth stages on yield and quality of sugar beet. Iranian Journal of Crop Sciences, 14(2), 94-107. (In Persian with English Summary) http://dorl.net/dor/20.1001.1.15625540.1391.14.2.1.4
  27. Pakmehr, S., Yazdanpanah, M., & Baradaran, M. (2021). Investigating the behavior of farmers in the face of water scarcity. Journal of AppliedSociology, 32(3), 135-154. (In Persian with English Summary) https://doi.org/10.22108/jas.2021.113630.1526
  28. Panahi, M., Agdaei, M., & Rezaei, M. (2006). Determination of sugar beet standard evapotranspiration by lysimeter method in Kabotar-Abad, Esfahan. Journal of Sugar Beet, 22(1), 25-37. https://doi.org/10.22092/jsb.2006.1663
  29. Pavlů, K., Chochola, J., Pulkrábek, J., & Urban, J. (2017). Influence of sowing and harvest dates on production of two different cultivars of sugar beet. Plant Soil Environment, 63(2), 76-81 https://doi.org/10.17221/614/2016-PSE.
  30. Pawar, G.S., Kale, M.U., & Lokhande, J.N. (2017). Response of AquaCrop model to different irrigation schedules for irrigated cabbage. Agricultural Research, 6(1), 73-81.‏ https://doi.org/10.1007/s40003-016-0238-2
  31. Qi, A., Kenter, C., Hoffmann, C., & Jaggard, K.W. (2005). The Broom’s Barn sugar beet growth model and its adaptation to soils with varied available water content. European Journal of Agronomy, 23, 108–122. https://doi.org/10.1016/j.eja.2004.09.007
  32. Rahimi-Moghaddam, S., Eyni-Nargeseh, H., Ahmadi, S.A.K., & Azizi, K. (2021). Towards withholding irrigation regimes and drought-resistant genotypes as strategies to increase canola production in drought-prone environments: A modeling approach. Agricultural Water Management, 243, 106487. https://doi.org/10.1016/j.agwat.2020.106487
  33. Rahimi-Moghaddam, S., Kambouzia, J., & Deihimfard, R. (2019). Optimal genotype× environment× management as a strategy to increase grain maize productivity and water use efficiency in water-limited environments and rising temperature. Ecological Indicators, 107, 105570. https://doi.org/10.1016/j.ecolind.2019.105570
  34. Saddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H.W., Chattha, M.U., Hassan, M.U., Khan, M.I., & He, J. (2019). Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (Crop Estimation through Resource and Environment Synthesis)-maize model. Agronomy, 9(2), 1-19. https://doi.org/10.3390/agronomy9020109
  35. Sadrghein, H. (2012), Effects of drip tape irrigation on quantity and quality of sugar beet yield. Journal of Water research in Agriculture, 26(3), 275-288. (In Persian with English Summary) https://doi.org/10.22092/jwra.2012.118981
  36. Saini, K.S., & Brar, N.S. (2018). Crop and water productivity of sugarbeet (Beta vulgaris) under different planting methods and irrigation schedules. Agricultural Research, 7(1), 93-97. https://doi.org/10.1007/s40003-018-0294-x
  37. Sepaskhah, A.R., & Kamgar-Haghighi, A.A. (1997). Water use and yields of sugarbeet grown under every-other-furrow irrigation with different irrigation intervals. Agricultural Water Management, 34(1), 71-79. https://doi.org/10.1016/S0378-3774(96)01290-5
  38. Seyedan, S.M., & Mansouri, H. (2019). Water productivity in sugar beet cultivation under classical and furrow irrigation system in Hamedan province. Journal of Agroecology, 11(2), 673-686. https://doi.org/10.22067/jag.v11i2.68593
  39. Soleymani, A., Khajehpour, M.R., Nourmohammadi, G., & Sadeghian, Y. (2003). Effects of planting date and pattern on some physiological growth indices of sugarbeet. Journal of Agricultural Sciences, 9(1), 105-122. (In Persian with English Summary)
  40. Spitters, C.J.T., Van Keulen, H., & Van Kraalingen, D.W.G. (1989). A simple and universal crop growth simulator: SUCROS87. In R. Rabbinge S.A. Ward and H.H. van Laar (Eds.) Simulation and Systems Management in Crop Protection. Pudoc, Wageningen, The Netherlands. p. 147-181
  41. Tabiei, H., & Baradaran, R. (2014). Effect of irrigation intervals and planting date on agronomic characteristics of Degen and Drfi (Securiger securidaca) in Birjand region. Iranian Journal of Field Crops Research, 12(1), 80-90. (In Persian with English Summary) https://doi.org/10.22067/gsc.v12i1.36643
  42. Vafadar, L., Ebadi, A., & Sajed, K. (2008). Effects of sowing date and plant density on yield and some traits of sugar beet genotypes. Electronic Journal of Crop Production, 1(2), 103-120. (In Persian with English Summary) https://dorl.net/dor/20.1001.1.2008739.1387.1.2.7.0
  43. van Laar, H.H., Goudriaan, J., & van Keulen, H. (1997). SUCROS 97: Simulation of crop growth for potential and water-limited production situations, as applied to spring wheat. Quantitative Approaches in Systems Analysis, Wageningen, The Netherlands.
  44. Wallach, D., Makowski, D., Jones, J.W., & Brun, F. (2014). Working with dynamic crop models: methods, tools and examples for agriculture and environment: Second Edition. pp. 1–487.
  45. Yonts, C.D., Wilson, R.G., & Smith, J.A. (1999). Influence of planting date on stand, yield and quality of sugarbeet. Journal of Sugar Beet Research, 36(3), 1-14.
  46. Zhou, L., Liao, S., Wang, Z., Wang, P., Zhang, Y., Yan, H., Gao, Z., Shen, S., Liang, X., Wang, J., & Zhou, S. (2018). A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China plain. Journal of Integrative Agriculture, 17(5), 1181–1193. https://doi.org/10.1016/S2095-3119(17)61818-5
CAPTCHA Image